Bulletin of Forestry Science / Volume 14 / Issue 2 / Pages 21-22
previous article | next article

Study on the stand structure, lying dead trees and site characteristics in the Remetekert forest reserve

Bálint Horváth, Melinda Nagy-Khell, Máté Farkas, Márton Tamás Németh, Katalin Bereczki, Bence Bolla, Virág Jeczó, Lászlóné Kiss, Valter Toldi, Tamás Fonyó & Gábor Illés

Correspondence

Correspondence: Horváth Bálint

Postal address: 9600 Sárvár, Várkerület 30/A.

e-mail: horvath.balint[at]uni-sopron.hu

Abstract

Long-term monitoring system in the Hungarian forest reserves has started in 2005 and almost 40 forests were surveyed up until the present days. The Remetekert forest reserve was investigated in 2022 for the first time; the study focused i.a. on site characteristics (e. g. soil composition) and stand structure, supplemented with the relief model and measurement of lying dead trees. Lessivated brown forest soil dominated in the forest which was suitable for the stand forming forest types: beech woodlands and sessile oak-hornbeam woodlands. Sessile oak was dominant tree species within the site however, beech and hornbeam also were abundant. Average living stock volume was 555.61 m3/ha, stand density was 762 stem/ha. Upper and lower canopy layer were typical, characterised by 20 meters and 14 meters average height. The distribution of lying dead trees was unequal, their average quantity was 24.75 m3/ha.

Keywords: monitoring, beech, sessile oak, hornbeam, dendrometry, terrestrial laser scanning

  • Aicardi I., Dabove P., Lingua A.M. & Piras M. 2016: Integration between TLS and UAV photogrammetry techniques for forestry applications. iForest - Biogeosciences and Forestry 10(1): 41–47. DOI: 10.3832/ifor1780-009
  • Bartha D., Bidló A., Borhidi A., Bölöni J., Czájlik P., Esztó P., Forró E., Hahn I., Horváth F., Kovács G., Maglóczky Zs., Mázsa K., Oroszi S., Siller I., Somogyi Z., Standovár T., Temesi G. & Traser Gy. 2002: Az erdőrezervátum fogalma. In: Horváth & Borhidi (eds.): 15-16.
  • Christensen M., Hahn K., Mountford E.P., Ódor P., Standovár T., Rozenbergar D. et al. 2005: Dead wood in European beech (Fagus sylvatica) forest reserves. Forest Ecology and Management 210: 267–282. DOI: 10.1016/j.foreco.2005.02.032
  • Czájlik P. 1989: Vándortábortól az „őserdő” rezervátumig. In: Soproni Egyetem: Az Erdészeti és Faipari Egyetem lapja, ‚89/1 (természetvédelmi különszám), pp. 36–39.
  • Czájlik P. 1994: Megtörtént a magyarországi erdőrezervátum-hálózat végleges kijelölése. Környezet és Fejlődés 5(2):36-38.
  • Erdőtérkép 2024: Magyarországi Erdészeti Webtérkép. Elérés: https://erdoterkep.nebih.gov.hu/. Elérve: 2024. 03. 19.
  • GreenValley International 2024: LiDAR360 User Guide. LiDAR point cloud processing and analyzing software. https://greenvalleyintl.com/gvi/web/us/file/EN-LiDAR360_UserGuide.pdf
  • Horváth F. 2012: Módszertani fejlesztések az erdőrezervátumok hosszú távú faállomány-szerkezeti kutatásához. Doktori értekezés, Nyugat-Magyarországi Egyetem, Roth Gyula Erdészeti és Vadgazdálkodási Tudományok Doktori Iskola, Sopron, 125 pp. URL
  • Horváth F. & Borhidi A. (eds.) 2002: A hazai erdőrezervátum-kutatás célja, stratégiája és módszerei. TermészetBÚVÁR Alapítvány Kiadó, Budapest, 289 pp.
  • Karpiński L., Maák I. & Wegierek P. 2021: The role of nature reserves in preserving saproxylic biodiversity: using longhorn beetles (Coleoptera: Cerambycidae) as bioindicators. The European Zoological Journal 88: 487–504. DOI: 10.1080/24750263.2021.1900427
  • Király G., Molnár Zs., Bölöni J., Csiky J. & Vojkó A. (eds.) 2008: Magyarország földrajzi kistájainak növényzete. MTA ÖBKI, Vácrátót, 248 pp.
  • LaRue E.A., Wagner F.W., Fei S., Atkins J.W., Fahey R.T., Gough C.M. et al. 2020: Compatibility of Aerial and Terrestrial LiDAR for Quantifying Forest Structural Diversity. Remote Sensing 12(9): 1407 DOI: 10.3390/rs12091407
  • Luo X-L., Jiang N., Li H-B., Xiao H-X., Chen X-Z. & Zhou J-W. 2024: A High-Precision Modeling and Error Analysis Method for Mountainous and Canyon Areas Based on TLS and UAV Photogrammetry. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing 17: 7710–7724. DOI: 10.1109/JSTARS.2024.3382092
  • Mátyás Cs. 1993: Erdőrezervátum: új koncepció tör utat. Erdészeti Lapok 128 (1):13. Teljes szöveg full text
  • Ódor P., Bölöni J. & Standovár T. 2009: Felvételezési protokoll az aljnövényzet mintavételére az erdőrezervátum hosszú távú vizsgálatsorozat (HTV) keretében. Kézirat, ER Achivum Vácrátót, 2 p.
  • Ódor P., Heilman-Clausen J., Christensen M., Aude E., van Dort K. W., Piltaver A. et al. 2006: Diversity of dead wood inhabiting fungi and bryophytes in semi-natural beech forests in Europe. Biological Conservation 131: 58–71. DOI: 10.1016/j.biocon.2006.02.004
  • Ökológiai Kutatóközpont 2024: Remetekert Erdőrezervátum. Elérés: https://erdorezervatum.hu/Remetekert. Elérve: 2024. 03. 19.
  • Parviainen J., Kassioumis K., Bücking W., Hochbichler E., Päivinen R. & Little D. 2000: Forest reserves research network in Europe. Mission, Goals, Outputs, Linkages, Recommendations and Partners. Final Report, COST Action E4. The Finnish Forest Research Institute, Joensuu Research Station, 28 p.
  • Sabatini F.M., Burrascano S., Keeton W.S., Levers C., Linder M., Pötzschner F. et al. 2018: Where are Europe’s last primary forests? Diversity and Distributions 24 (10): 1426–1439. DOI: 10.1111/ddi.12778
  • Sabatini F.M., Hendrik B. et al. 2021: European primary forest database v2.0. SCIENTIFIC DATA 8(1) Paper: 220, 14 p. DOI: 10.1038/s41597-021-00988-7
  • Somogyi Z. 2002: 5. Az erdőrezervátumokban folytatandó kutatások általános célkitűzései In: Horváth & Borhidi (eds.): 83-87.
  • Standovár T., Ódor P., Aszalós R. & Gálhidy L. 2007: Sensitivity of ground layer vegetation diversity descriptors in indicating forest naturalness. Community Ecology 7: 199–209. DOI: 10.1556/ComEc.7.2006.2.7
  • Temesi G., Mázsa K. & Horváth F. 2002: 3. Az Erdőrezervátum-program jogi, szervezeti és infrastruktúrális keretei. In: Horváth & Borhidi (eds.): 27-59.
  • Torralba J., Carbonella-Rivera J.P., Ruiz L.Á. & Crespo-Peremarch P. 2022: Analyzing TLS Scan Distribution and Point Density for the Estimation of Forest Stand Structural Parameters. Forests 13(12): 2115. DOI: 10.3390/f13122115
  • Uhl B., Wölfing M. & Fiedler K. 2020: Understanding small-scale insect diversity patterns inside two nature reserves: the role of local and landscape factors. Biodiversity Conservation 29: 2399–2418. DOI: 10.1007/s10531-020-01981-z
  • Vandekerkhove K., De Keersmaeker L., Menke N., Meyer P. & Verschelde P. 2009: When nature takes over from man: Dead wood accumulation in previously managed oak and beech woodlands in North-western and Central Europe. Forest Ecology and Management 258(4): 425–235. DOI: 10.1016/j.foreco.2009.01.055
  • Wölfling M., Uhl B. & Fiedler K. 2020: Ecological Drift and Directional Community Change in an Isolated Mediterranean Forest Reserve—Larger Moth Species Under Higher Threat. Journal of Insect Science 7: 1–10. DOI: 10.1093/jisesa/ieaa097
  • 2009. évi XXXVII. törvény az erdőről, az erdő védelméről és az erdőgazdálkodásról
  • Open Acces

    For non-commercial purposes, let others distribute and copy the article, and include in a collective work, as long as they cite the author(s) and the journal, and provided they do not alter or modify the article.

    Cite this article as:

    Horváth, B., Nagy-Khell, M., Farkas, M., Németh, T. M., Bereczki, K., Bolla, B., Jeczó, V., Kiss, L., Toldi, V., Fonyó, T. & Illés, G. (2024): Study on the stand structure, lying dead trees and site characteristics in the Remetekert forest reserve. Bulletin of Forestry Science, 14(2): 21-22. (in Hungarian) DOI: 10.17164/EK.2024.11

    Volume 14, Issue 2
    Pages: 21-22

    DOI: 10.17164/EK.2024.11

    First published:
    28 January 2025

    Related content

    15

    More articles
    by this authors

    20

    Related content in the Bulletin of Forestry Science*

  • Kollár, T. & Borovics, A. (2021): The updated methodological directives of data processing and maintainance of the hungarian long term forestry experimental network, and its most important results. Bulletin of Forestry Science, 11(2): 95-114.
  • Horváth, Cs. V., Tinya, F., Kovács, B. & Ódor, P. (2021): The effect of different forestry treatments on the understory vegetation of a sessile oak-hornbeam forest. Bulletin of Forestry Science, 11(1): 55-68.
  • Baltazár, T., Varga, I. & Pejchal, M. (2019): Investigation of relationship between dendrometric variables of infected host trees by European mistletoe (Viscum album L.) with dependence of infection intensity. Bulletin of Forestry Science, 9(2): 69-85.
  • Komlós, M. & Kiss, Cs. (2018): Estimation of the fallen dead wood in the Sopron Mountains. Bulletin of Forestry Science, 8(2): 99-111.
  • Hirka, A., Pödör, Z., Garamszegi, B. & Csóka, Gy. (2018): 50 years trends of the forest drought damage in Hungary (1962-2011). Bulletin of Forestry Science, 8(1): 11-25.
  • Horváth, B. (2016): Zoogeographical characteristics of the nocturnal macrolepidoptera fauna of sessile oak-hornbeam forests in the Sopron Mountains. Bulletin of Forestry Science, 6(2): 151-159.
  • Illés, G., Kollár, T., Veperdi, G. & Führer, E. (2014): Forests’ yield and height growth dependence on site conditions in County Zala Hungary. Bulletin of Forestry Science, 4(2): 77-89.
  • Salamon-Albert, É., Lőrincz, P. & Csiszár, Á. (2014): Ecophysiological responses of woody regrowth under gap-phase regeneration in Turkey oak – Sessile oak forests. Bulletin of Forestry Science, 4(1): 83-94.
  • Frank, N., Fülöp, T. & Folcz, Á. (2014): Volume-tariff table for Silver lime – European beech stands. Bulletin of Forestry Science, 4(1): 73-82.
  • Csiszár, Á., Korda, M., Zagyvai, G., Winkler, D., Tiborcz, V., Süle, P., Šporčić, D., Naár, D. & Bartha, D. (2014): Study on woody regrowth in sessile oak-hornbeam forest gaps in Sopron Hills. Bulletin of Forestry Science, 4(1): 23-35.
  • Horváth, B. (2013): Comparing diversity of nocturnal macrolepidoptera communities (Lepidoptera: Macroheterocera) in different forest stands using light traps. Bulletin of Forestry Science, 3(1): 229-237.
  • Zagyvainé, K. A., Kalicz, P. & Gribovszki, Z. (2013): Dry weight-dependence of water capacity of the forest litter. Bulletin of Forestry Science, 3(1): 79-88.
  • Czúcz, B., Gálhidy, L. & Mátyás, Cs. (2013): Present and forecasted distribution of beech and sessile oak at the xeric climatic limits in Central Europe. Bulletin of Forestry Science, 3(1): 39-53.
  • Náhlik, A., Dremmel, L., Sándor, Gy. & Tari, T. (2012): Long term effects of browsing of seedlings as examined in pole stage. Bulletin of Forestry Science, 2(1): 163-172.
  • Führer, E., Marosi, Gy., Jagodics, A. & Juhász, I. (2011): A possible effect of climate change in forest management. Bulletin of Forestry Science, 1(1): 17-28.
  • More articles by this authors in the Bulletin of Forestry Science

  • Horváth, B. & Lakatos, F. (2014): Study on the diversity of nocturnal Macrolepidoptera communities in different age sessile oak – hornbeam forests. Bulletin of Forestry Science, 4(1): 185-196.
  • Horváth, B. & Ambrus, A. (2017): Mark-recapture study on the featheres thorn (Colotis pennaria), mottled umber (Erannis defoliaria) and scarce umber (Eranis aurantiaria). Bulletin of Forestry Science, 7(1): 59-67.
  • Garamszegi, B., Nagy-Khell, M., Farkas, M. & Nagy, L. (2018): Impact of weather conditions on the interannual growth characteristics of alder and oak stands with improved groundwater-management. Bulletin of Forestry Science, 8(2): 9-16.
  • Winkler, D. A., Németh, T. M. & Traser, Gy. N. (2013): Comparative study of Collembolan communities in different forest types of Finland. Bulletin of Forestry Science, 3(1): 205-214.
  • Bolla, B., Németh, T. M. & Gácsi, Zs. (2018): Monitoring of the hydrological balance in forest stands of Kiskunság. Bulletin of Forestry Science, 8(2): 37-50.
  • Németh, T. M., Szabó, O. & Móricz, N. (2021): Comparative drought sensitivity analysis of young sessile oak and turkey oak trees in Somogy county (Hungary). Bulletin of Forestry Science, 11(1): 27-40.
  • Benke, A., Toldi, V., Süle, T. & Bereczki, K. (2024): Effects of fertilization on nutrient accumulation in black locust (Robinia pseudoacacia L.) leaves: results of an experiment in Tápiószele. Bulletin of Forestry Science, 14(2): 15-16.
  • Bolla, B., Kalicz, P. & Gribovszki, Z. (2014): Water balance of forests in Kiskunság sandridge. Bulletin of Forestry Science, 4(2): 21-31.
  • Szabó, A., Gribovszki, Z., Bolla, B., Balog, K., Csáfordi, P. & Tóth, T. (2019): Effect of Robinia pseudoacacia, Populus x. euramericana, and Quercus robur plantations on groundwater and iontransport at the northern hungarian plain. Bulletin of Forestry Science, 9(2): 87-97.
  • Bolla, B. & Szabó, A. (2020): Early results of the NARIC-FRI hydrological and meteorological monitoring system. Bulletin of Forestry Science, 10(1): 41-54.
  • Szabó, A., Gribovszki, Z., Szolgay, J., Kalicz, P. & Bolla, B. (2024): Investigation of the relationship between groundwater and the root zone in the Püspökladány-Farkassziget study site during the period 2020-2023. Bulletin of Forestry Science, 14(2): 19-20.
  • Illés, G., Fonyó, T., Pásztor, L., Bakacsi, Zs., Laborczi, A., Szatmári, G. & Szabó, J. (2016): Results of Agroclimate 2 project: Compilation of digital soil-type map of Hungary. Bulletin of Forestry Science, 6(1): 17-24.
  • Illés, G. & Fonyó, T. (2016): Assessing the expected impact of climate change on forest yield potential in the AGRAGIS project. Bulletin of Forestry Science, 6(1): 25-34.
  • Illés, G., Kovács, G. & Heil, B. (2011): High resolution digital soil mapping in the Vaskereszt forest reserve. Bulletin of Forestry Science, 1(1): 29-43.
  • Kovács, G., Illés, G., Mészáros, D., Szabó, O., Vigh, A. & Heil, B. (2012): Evaluation of changes of site parameters in the Noszlop forest district. Bulletin of Forestry Science, 2(1): 47-60.
  • Illés, G., Kovács, G., Laborczi, A. & Pásztor, L. (2014): Developing a unified soil type database for County Zala Hungary using classification algorithms. Bulletin of Forestry Science, 4(2): 55-64.
  • Illés, G. (2018): Predicting the climate change induced yield potential changes of sessile oak stands. Bulletin of Forestry Science, 8(1): 105-118.
  • Borovics, A., Illés, G., Juhász, J., Móricz, N., Rasztovits, E., Nimmerfroh-Pletscher, B., Unghváry, F., Pintér, T., Pödör, Z. & Jereb, L. (2018): The necessity and steps of establishing a forestry climate centre. Bulletin of Forestry Science, 8(2): 5-8.
  • Illés, G. & Móricz, N. (2022): Investigating the climate analogue area of domestic tree species in the light of climate change. Bulletin of Forestry Science, 12(2): 91-112.
  • Illés, G. & Schiberna, E. (2024): Assessing afforestation potential on the basis of ecological datasets. Bulletin of Forestry Science, 14(1): 7-8.
  • * Automatically generated recommendations based on the occurrence of keywords given by authors in the titles and abstracts of other articles. For more detailed search please use the manual search.