Bulletin of Forestry Science / Volume 14 / Issue 2 / Pages 19-20
previous article | next article

Investigation of the relationship between groundwater and the root zone in the Püspökladány-Farkassziget study site during the period 2020-2023

András Szabó, Zoltán Gribovszki, Ján Szolgay, Péter Kalicz & Bence Bolla

Correspondence

Correspondence: Szabó András

Postal address: 1277 Budapest, Pf: 17.

e-mail: szabo.andras[at]uni-sopron.hu

Abstract

Forest vegetation is particularly sensitive to rapid environmental changes. In the case of forest stands on the Great Hungarian Plain, such changes may include the decades-long groundwater level decrease and the increasing length of drought periods. We have investigated the relationship between the root system of the forest stand and the groundwater level over four years at our study site at Püsökladány-Farkassziget, which is particularly exposed to aforementioned negative impacts, using high temporal resolution groundwater level and meteorological data. Our results show that by the end of the 2021 growing season, the connection between groundwater and the root system was partially, and by the same period in 2022, it was completely lost. We did not observe any positive changes in 2023. If this situation persists in the long term, it raises questions about the sustainability of the forest stand under investigation.

Keywords: groundwater, root system, water scarcity, sustainable forest management

  • Ábri T., Keserű Z., Borovics A., Rédei K. & Csajbók J. 2022: Comparison of Juvenile, Drought Tolerant Black Locust (Robinia pseudoacacia L.) Clones with Regard to Plant Physiology and Growth Characteristics in Eastern Hungary: Early Evaluation. Forests 13(2): 292. DOI: 10.3390/f13020292
  • Barbeta A., Mejía-Chang M., Ogaya R., Voltas J., Dawson T.E. & Peñuelas J. 2015: The Combined Effects of a LongTerm Experimental Drought and an Extreme Drought on the Use of Plant-Water Sources in a Mediterranean Forest. Global Change Biology 21(3): 1213–25. DOI: 10.1111/gcb.12785
  • Andualem T.G., Demeke G.G., Ahmed I., Dar M.A. & Yibeltal M. 2021: Groundwater Recharge Estimation Using Empirical Methods from Rainfall and Streamflow Records. Journal of Hydrology: Regional Studies 37: 100917. DOI: 10.1016/j.ejrh.2021.100917
  • Atawneh D.A., Cartwright N. & Bertone E. 2021: Climate Change and Its Impact on the Projected Values of Groundwater Recharge: A Review. Journal of Hydrology 601: 126602. DOI: 10.1016/j.jhydrol.2021.126602
  • Bartholy J. & Pongrácz R. 2007: Regional Analysis of Extreme Temperature and Precipitation Indices for the Carpathian Basin from 1946 to 2001. Global and Planetary Change 57(1): 83–95. DOI: 10.1016/j.gloplacha.2006.11.002
  • Benke A., Köbölkuti Z.A., Cseke K., Borovics A. & Tóth E.G. 2022: Szárazságtűrésben szerepet játszó SNP-k azonosítása kocsánytalan tölgy populációkban: alapkutatási eredmények a fenntartható tölgygazdálkodásért. Erdészettudományi Közlemények 12(2): 77–90. DOI: 10.17164/EK.2022.05
  • Bolla B., Manninger M., Molnár T., Horváth B., Szolgay J., Gribovszki Z., Kalicz P. & Szabó A. 2024: Evaluation of the Compound Effects of the 2022 Drought and Heatwave on Selected Forest Monitoring Sites in Hungary in Relation to Its Multi-Year Drought Legacy. Forests 15(6): 941. DOI: 10.3390/f15060941
  • Brodribb T.J., Powers J., Cochard H. & Choat B. 2020: Hanging by a Thread? Forests and Drought. Science 368(6488): 261–66. DOI: 10.1126/science.aat7631
  • Budyko M.I. 1974: Climate of Life. New York and London, Academic Press.
  • Csáfordi P., Szabó A., Balog K., Gribovszki Z., Bidló A. & Tóth T. 2017: Factors Controlling the Daily Change in Groundwater Level during the Growing Season on the Great Hungarian Plain: A Statistical Approach. Environmental Earth Sciences 76: 1–16. DOI: 10.1007/s12665-017-7002-1
  • Csiha I. & Keserű Z. 2014: Szárazodó homoki termőhelyen álló idős fák gyökérzetének vizsgálata. Erdészettudományi Közlemények 4(2): 33–42. full text
  • Fan J., Oestergaard K.T., Guyot A. & Lockington D.A. 2014: Estimating Groundwater Recharge and Evapotranspiration from Water Table Fluctuations under Three Vegetation Covers in a Coastal Sandy Aquifer of Subtropical Australia. Journal of Hydrology 519: 1120–29. DOI: 10.1016/j.jhydrol.2014.08.039
  • Skiadaresis G., Schwarz J., Stahl K. & Bauhus J. 2021: Groundwater Extraction Reduces Tree Vitality, Growth and Xylem Hydraulic Capacity in Quercus robur during and after Drought Events. Scientific Reports 11(1): 5149–5149. DOI: 10.1038/s41598-021-84322-6
  • Gribovszki Z., Szilágyi J. & Kalicz P. 2010: Diurnal Fluctuations in Shallow Groundwater Levels and Streamflow Rates and Their Interpretation – A Review. Journal of Hydrology 385(1–4): 371–83. DOI: 10.1016/j.jhydrol.2010.02.001
  • Hbirkou C., Martius C., Khamzina A., Lamers J.P.A., Welp G. & Amelung W. 2011: Reducing Topsoil Salinity and Raising Carbon Stocks through Afforestation in Khorezm, Uzbekistan. Journal of Arid Environments 75(2): 146–55. DOI: 10.1016/j.jaridenv.2010.09.018
  • Hlásny T., Mátyás C., Seidl R., Kulla L., Merganičová K., Trombik J., Dobor L., Barcza Z. & Konôpka B. 2014: Climate change increases the drought risk in Central European forests: What are the options for adaptation? Central European Forestry Journal 60(1): 5–18.
  • Hou X., Hui Y., Cao J., Feng W. & Zhang Y. 2023: A Review of Advances in Groundwater Evapotranspiration Research. Water 15: 969. DOI: 10.3390/w15050969
  • Hruska J., Čermák J. & Šustek S. 1999: Mapping Tree Root Systems with Ground-Penetrating Radar. Tree Physiology 19(2): 125–30. DOI: 10.1093/treephys/19.2.125
  • Ijjász E. 1939: A fatenyészet és az altalajvíz, különös tekintettel a nagyalföldi viszonyokra. Erdészeti kísérletek 42(1): 107.
  • Járó Z. 1981: A hazai erdők vízfogyasztása. Agrártudományi közlemények: A magyar tudományos akadémia agrártudományok osztályának közleményei 40(2–4): 353–56.
  • Lee C.-H., Chen W.-P. & Lee R.-H. 2006: Estimation of Groundwater Recharge Using Water Balance Coupled with Base-Flow-Record Estimation and Stable-Base-Flow Analysis. Environmental Geology 51(1): 73–82. DOI: 10.1007/s00254-006-0305-2
  • Li Y., Zhao M., Motesharrei S., Mu Q., Kalnay E. & Li S. 2015: Local Cooling and Warming Effects of Forests Based on Satellite Observations. Nature Communications 6(1): 6603. DOI: 10.1038/ncomms7603
  • Loheide S.P., Butler Jr J.J. & Gorelick S.M. 2005: Estimation of Groundwater Consumption by Phreatophytes Using Diurnal Water Table Fluctuations: A Saturated-Unsaturated Flow Assessment. Water resources research 41(7). DOI: 10.1029/2005WR003942
  • Magyar P. 1961: Alföldfásítás. I-II. Budapest. Akadémiai Kiadó.
  • Major P. 1993: A Nagy-Alföld talajvízháztartása. Hidrológia Közlöny 73(1): 40-43.
  • Manna F., Cherry J.A., McWhorter D.B. & Parker B.L. 2016: Groundwater Recharge Assessment in an Upland Sandstone Aquifer of Southern California. Journal of Hydrology 541: 787–99. DOI: 10.1016/j.jhydrol.2016.07.039
  • Mauer O., Houšková K. & Mikita T. 2017: The Root System of Pedunculate Oak (Quercus robur L.) at the Margins of Regenerated Stands. Journal of Forest Science 63(1): 22-33. DOI: 10.17221/85/2016-JFS
  • Novák T. 2022: Afforestation Affects Vertical Distribution of Basic Soil Characteristics and Taxonomic Status of Sodic Soils. Plant, Soil and Environment 68(5): 245–52. DOI: 10.17221/53/2022-PSE
  • Obuobie E., Diekkrueger B., Agyekum W. & Agodzo S. 2012: Groundwater Level Monitoring and Recharge Estimation in the White Volta River Basin of Ghana. Journal of African Earth Sciences 71–72: 80–86. DOI: 10.1016/j.jafrearsci.2012.06.005
  • Szabó A., Gribovszki Z., Kalicz P., Szolgay J. & Bolla B. 2022: The Soil Moisture Regime and Groundwater Recharge in Aged Forests in the Sand Ridge Region of Hungary after a Decline in the Groundwater Level: An Experimental Case Study. Journal of Hydrology and Hydromechanics 70(3): 308–320. DOI: 10.2478/johh-2022-0019
  • Szabó Z., Tahy A. & Mádl-Szőnyi J. 2020: A célzott felszín alatti vízutánpótlás nemzetközi trendjei és hazai alkalmazási lehetőségei (Managed Aquifer Recharge – State of the Art, Needs and Possibilities in Hungary). Hidrológiai Közlöny 100(4): 40–51.
  • Szilágyi J. & Vörösmarty Ch. 1993: A Duna–Tisza közi talajvízszint-süllyedések okainak vizsgálata. Vízügyi Közlemények 75(3): 280–94.
  • Tatarinov F., Urban J. & Čermák J. 2008: Application of ‘Clump Technique’ for Root System Studies of Quercus robur and Fraxinus excelsior. Forest Ecology and Management 255(3–4): 495–505. DOI: 10.1016/j.foreco.2007.09.022
  • Thomas F.M. & Hartmann G. 1998: Tree Rooting Patterns and Soil Water Relations of Healthy and Damaged Stands of Mature Oak (Quercus robur L. and Quercus petraea [Matt.] Liebl.). Plant and Soil 203: 145–58. DOI: 10.1023/A:1004305410905
  • Tóth J. 1963: A Theoretical Analysis of Groundwater Flow in Small Drainage Basins. Journal of Geophysical Research 68(16): 4795–4812. DOI: 10.1029/JZ068i016p04795
  • Varga-Haszonits Z., Tar K., Lantos Z. & Varga Z. 2015: Párolgási formulák összehasonlítása a mosonmagyaróvári meteorológiai állomás adatai alapján. Növénytermelés 64(3): 77–96.
  • Varga-Haszonits Z. & Varga Z. 2014: A meteorológiai tényezők és a növényfejlődés közötti kapcsolat modellezésének módszertani alapjai. Acta Agronomica Óváriensis 56(1): 53–74. full text
  • White W.N. 1932: A Method of Estimating Ground-Water Supplies Based on Discharge by Plants and Evaporation from Soil: Results of Investigations in Escalante Valley, Utah. Water Supply Paper 659-A US Government Printing Office. p. 115. DOI: 10.3133/wsp659A
  • Yadav B., Parker A., Sharma A., Sharma R., Krishan G., Kumar S., Corre K.L., Moreno P.C. & Singh J. 2023: Estimation of Groundwater Recharge in Semiarid Regions under Variable Land Use and Rainfall Conditions: A Case Study of Rajasthan, India. PLOS Water 2(3): e0000061. DOI: 10.1371/journal.pwat.0000061
  • Open Acces

    For non-commercial purposes, let others distribute and copy the article, and include in a collective work, as long as they cite the author(s) and the journal, and provided they do not alter or modify the article.

    Cite this article as:

    Szabó, A., Gribovszki, Z., Szolgay, J., Kalicz, P. & Bolla, B. (2024): Investigation of the relationship between groundwater and the root zone in the Püspökladány-Farkassziget study site during the period 2020-2023. Bulletin of Forestry Science, 14(2): 19-20. (in Hungarian) DOI: 10.17164/EK.2024.10

    Volume 14, Issue 2
    Pages: 19-20

    DOI: 10.17164/EK.2024.10

    First published:
    27 January 2025

    Related content

    5

    More articles
    by this authors

    8

    Related content in the Bulletin of Forestry Science*

    More articles by this authors in the Bulletin of Forestry Science

  • Bolla, B. & Szabó, A. (2020): Early results of the NARIC-FRI hydrological and meteorological monitoring system. Bulletin of Forestry Science, 10(1): 41-54.
  • Kalicz, P., Gribovszki, Z. & Király, G. (2011): Riparian forest impact onto streamflow recession curve and its meaning. Bulletin of Forestry Science, 1(1): 45-57.
  • Zagyvainé, K. A., Kalicz, P. & Gribovszki, Z. (2013): Dry weight-dependence of water capacity of the forest litter. Bulletin of Forestry Science, 3(1): 79-88.
  • Bolla, B., Kalicz, P. & Gribovszki, Z. (2014): Water balance of forests in Kiskunság sandridge. Bulletin of Forestry Science, 4(2): 21-31.
  • Csáki, P., Kalicz, P., Csóka, G., Brolly, G. B., Czimber, K. & Gribovszki, Z. (2014): Hydrological impacts of different land cover types in the context of climate change for Zala County. Bulletin of Forestry Science, 4(2): 65-76.
  • Herceg, A., Kalicz, P., Kisfaludi, B. & Gribovszki, Z. (2018): A Thornthwaite-type water balance model for the analysis of the hydrological impact of climate change. Bulletin of Forestry Science, 8(1): 73-92.
  • Primusz, P., Kalicz, P., Kisfaludi, B. & Péterfalvi, J. (2019): Determining the bearing capacity of lime-treated soils by the CBR method. Bulletin of Forestry Science, 9(2): 139-157.
  • Horváth, B., Nagy-Khell, M., Farkas, M., Németh, T. M., Bereczki, K., Bolla, B., Jeczó, V., Kiss, L., Toldi, V., Fonyó, T. & Illés, G. (2024): Study on the stand structure, lying dead trees and site characteristics in the Remetekert forest reserve. Bulletin of Forestry Science, 14(2): 21-22.
  • * Automatically generated recommendations based on the occurrence of keywords given by authors in the titles and abstracts of other articles. For more detailed search please use the manual search.