Bulletin of Forestry Science / Volume 8 / Issue 1 / Pages 73-92
previous article | next article

A Thornthwaite-type water balance model for the analysis of the hydrological impact of climate change

András Herceg, Péter Kalicz, Balázs Kisfaludi & Zoltán Gribovszki

Correspondence

Correspondence: Herceg András

Postal address: H-9400 Sopron, Bajcsy-Zsilinszky u. 4.

e-mail: herceg.andras88[at]gmail.com

Abstract

The global temperature increase is expected to cause severe impacts on the water balance. The objective of this paper was to develop a new monthly step model based on a Thornthwaite-type monthly water balance estimation and calibrate the model parameters using remote sensing-based evapotranspiration dataset. The calibrated model was also used for projection based on the simulation results of 4 regional climate models applying the IPCC SRES A1B emission scenario. The 3 periods of projection were: 2010-2040, 2040-2070, and 2070-2100 compared to the reference period (1980/2010). The benefit of our method is its robust structure; therefore it can be applied if temperature and precipitation time series are accessible. The key parameter is the water storage capacity of the soil (SOILMAX), which can be calibrated using the actual available evapotranspiration data as well. If the soil’s physical properties are available, the maximal rooting depth is also projectable. The model can be used at the catchment level or for areas without additional water amounts from below. We have determined parameters (REW; SWD) to evaluate the water stress during the 21st century. The model has been successfully calibrated for a mixed parcel and for a small forest covered catchment in Northwest Hungary.

Keywords: water balance, climate change, evapotranspiration, soil moisture, water stress

  • Bartholy J., Bozó L. & Haszpra L. 2011: Klímaváltozás – 2011, Klímaszcenáriók a Kárpát-medence térségére. Magyar Tudományos Akadémia, Eötvös Loránd Tudományegyetem, Meteorológiai Tanszék.
  • Christensen J.H. & Van Meijgaard E. 1992: On the construction of a regional atmospheric climate model. Technical Reports - Royal Netherlands Meteorological Institute, (TR-147).
  • Christensen J.H., Bøssing Christensen O., Lopez P., van Meijgaard E., & Botzet M. 1996: The HIRHAM4 Regional Atmospheric Climate Model. Scientific Report 96-4, Danish Meteorological Institute.
  • Christensen J.H. & Christensen O.B. 2007: A summary of the PRUDENCE model projections of changes in European climate by the end of this century. Climatic Change 81: 7–30. DOI: 10.1007/s10584-006-9210-7
  • Dövényi Z. 2010: Magyarország kistájainak katasztere – második, átdolgozott és bővített kiadás. MTA, Budapest.
  • Dingman L.S. 2002: Physical hydrology. Upper Saddle River, N.J., Prentice Hall.
  • Gálos B., Führer E., Czimber K., Gulyás K., Bidló A., Hänsler A., Jacob D. & Mátyás Cs. 2015: Climatic threats determining future adaptive forest management – a case study of Zala County. Időjárás 119(4): 425–441.
  • Granier A., Breda N., Biron P. & Villette S. 1999: A lumped water balance model to evaluate duration and intensity of drought constraints in forest stands. Ecological Modelling 116: 269–283. DOI: 10.1016/s0304-3800(98)00205-1
  • Guitjens J.C. 1982: Models of alfalfa yield and evapotranspiration. Journal of the Irrigation and Drainage Division 108(3): 212–222.
  • Hamon W.R. 1963: Computation of direct runoff amounts from storm rainfall. International Association of Scientific Hydrology Publication 63: 52–62.
  • HREX jelentés. Lakatos M., Szépszó G., Bihari Z., Krüzselyi I., Szabó P., Bartholy J. et al. 2012: Éghajlati szélsőségek változásai Magyarországon: Közelmúlt és jövő – A magyarországi eredmények összefoglalása az IPCC szélsőséges éghajlati események kockázatáról és kezeléséről szóló Tematikus Jelentéshez kapcsolódóan. Országos Meteorológiai Szolgálat, Budapest.
  • IPCC 2000: Emissions scenarios. In: Nakicenovic N. & Swart R. (eds) Contribution of Working Group III to the Special Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, United Kingdom.
  • IPCC 2014: Summary for Policymakers. In: Climate Change 2014, Mitigation of Climate Change. Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, United Kingdom and New York, USA.
  • Jacob D. 2001: A note to the simulation of the annual and inter-annual variability of the water budget over the Baltic Sea drainage basin. Meteorology and Atmospheric Physics 77: 61–73. DOI: 10.1007/s007030170017
  • Jacob D., Barring L., Christensen O.B., Christensen J.H., Castro M., DeUe M., et al. 2007: An inter-comparison of regional climate models for Europe: model performance in present-day climate. Climatic Change 81: 31–52. DOI: 10.1007/s10584-006-9213-4
  • Jacob D., Kotova L., Lorenz P., Moseley C.H. & Pfeifer S. 2008: Regional climate modeling activities in relation to the CLAVIER project. Időjárás 112: 141–153.
  • Jones C.G., Ullerstig A., Willen U. & Hansson U. 2004: The Rossby Centre regional atmospheric climate model (RCA). Part I: model climatology and performance characteristics for present climate over Europe. AMBIO: A Journal of the Human Environment 33(4): 199–210. DOI: 10.1579/0044-7447-33.4.199
  • Keables M.J. & Mehta S. 2010: A soil water climatology for Kansas. Great Plains Research: A Journal of Natural and Social Sciences 20: 229–248.
  • Kisfaludi B., Csáki P., Primusz P., Péterfalvi J. & Gribovszki Z. 2015: Comparison of CREMAP and MODIS MOD16 evapotranspiration. International conference: Catchment processes in regional hydrology, Linking experiments and modelling in Carpathian drainage basins 2015.10.29. Vienna.
  • Kisházi P. & Ivancsics J. 1985: Sopron Környéki Üledékek Összefoglaló Földtani Értékelése. Kézirat, Sopron.
  • Kovács Á. 2011: Tó- és területi párolgás becslésének pontosítása és magyarországi alkalmazásai. PhD értekezés, Budapesti Műszaki és Gazdaságtudományi Egyetem, Építőmérnöki Kar, Budapest.
  • Linden van der P., Mitchell J.F.B. (eds) 2009: ENSEMBLES: Climate Change and its Impacts: Summary of research and results from the ENSEMBLES project. Met Office Hadley Centre, FitzRoy Road, Exeter EX1 3PB, UK.
  • Lutz J.A., Wagtendonik J.W. & Franklin J.F. 2010: Climatic water deficit, tree species ranges, and climate change in Yosemite National Park. Journal of Biogeography 37: 936–950. DOI: 10.1111/j.1365-2699.2009.02268.x
  • Marosi S. & Somogyi S. (eds) 1990: Magyarország Kistájainak Katasztere I. MTA Földrajztudományi Kutató Intézet, Budapest.
  • Mika J., 1999: Klímaforgatókönyvek a nemzeti stratégia fejlesztéséhez a vízgazdálkodásiban. In: Somlyódy L. (eds): Nemzeti vízgazdálkodás stratégia. Magyar Tudományos Akadémia, Budapest.
  • Mingteh Cs. 2006: Forest Hydrology: An introduction to water and forests (second edition). Stephen F. Austin State University, Texas, U.S.A.
  • Morton F.I., Ricard F. & Fogarasi S. 1985: Operational estimates of areal evapotranspiration and lake evaporation: Program WREVAP. National Hydrological Research Institute, Ottawa: Inland Waters Directorate.
  • Muggeo V.M.R. 2008: Segmented: an R package to fit regression models with broken-line relationships. R News 8(1): 20–25.
  • Neilson R. 1995: A model for projecting continental-scale vegetation distribution and water balance. Ecological Applications 5(2): 362–385. DOI: 10.2307/1942028
  • Nováky B. & Bálint G. 2013: Shifts and Modification of the Hydrological Regime Under Climate Change in Hungary. In: Singh B.R. ed. Climate Change – Realities, Impacts Over Ice Cap, Sea Level and Risks, Chapter 6. DOI: 10.5772/54768
  • Pongrácz R., Bartholy J. & Miklós E. 2011: Analysis of projected climate change for Hungary using ENSEMBLES simulations. Applied Ecology and Environmental Research 9(4): 387–398. DOI: 10.15666/aeer/0904_387398
  • Priestley C.H.B. & Taylor R.J. 1972: On the assessment of surface heat flux and evaporation using large‐scale parameters. Monthly Weather Review 100(2): 81–92. DOI: 10.1175/1520-0493(1972)100<0081:otaosh>2.3.co;2
  • R Core Team 2012: R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL
  • Remrová M. & Cislerová M. 2010: Analysis of climate change effects on evapotranspiration in the watershed Uhlírská in the Jizera mountains. Soil and Water Research 5(1): 28–38. DOI: 10.17221/5/2009-swr
  • Sun G.K., Alstad J., Chen S., Chen C.R., Ford G., Lin C. et al. 2011: A general projective model for estimating monthly ecosystem evapotranspiration. Ecohydrology 4(2): 245–255. DOI: 10.1002/eco.194
  • Szilágyi J. & Józsa J. 2008: Klímaváltozás és a víz körforgása. Magyar tudomány 169(6): 698–703.
  • Szilágyi J. & Józsa J. 2009: Estimating spatially distributed monthly evapotranspiration rates by linear transformations of MODIS daytime land surface temperature data. Hydrology and Earth System Sciences Discussions 13(5): 629–637. DOI: 10.5194/hessd-6-1433-2009
  • Szilágyi J. & Kovács Á. 2010: Complementary-relationship-based evapotranspiration mapping (CREMAP) technique for Hungary. Periodica Polytechnica Civil Engineering 54(2): 95–100. DOI: 10.3311/pp.ci.2010-2.04
  • Szilágyi J. Kovacs A. & Józsa J. 2011: A calibration-free evapotranspiration mapping (CREMAP) technique. In: Łabędzki L. (ed) Evaporation, Chapter 11. DOI: 10.5772/14277
  • Thornthwaite C.W. & Mather J.R. 1955: The water balance. Drexel Institute of Technology, Laboratory of Technology, Publications in climatology. Philadelphia.
  • Vörösmarty C.J., Federer C.A. & Schloss A.L. 1998: Potential evaporation functions compared on US watersheds: Possible implications for global-scale water balance and terrestrial ecosystem modeling. Journal of Hydrology 207: 147–169. DOI: 10.1016/s0022-1694(98)00109-7
  • Wilson B.N. & Brown J.W. 1992: Development and evaluation of a dimensionless unit hydrograph. Journal of the American Water Resources Association 28: 397–408. DOI: 10.2166/nh.1972.0007
  • URL1: Klímabarát Települések Szövetsége. (Letöltés dátuma: 2014.01.31.) URL
  • URL2: Infrastructure for the European Network for Earth System Modelling / Background & topics / Climate model data / Uncertainties. (Letöltés dátuma: 2017.08.10.) URL
  • Open Acces

    For non-commercial purposes, let others distribute and copy the article, and include in a collective work, as long as they cite the author(s) and the journal, and provided they do not alter or modify the article.

    Cite this article as:

    Herceg, A., Kalicz, P., Kisfaludi, B. & Gribovszki, Z. (2018): A Thornthwaite-type water balance model for the analysis of the hydrological impact of climate change. Bulletin of Forestry Science, 8(1): 73-92. (in Hungarian) DOI: 10.17164/EK.2018.005

    Volume 8, Issue 1
    Pages: 73-92

    DOI: 10.17164/EK.2018.005

    First published:
    29 May 2018

    Related content

    7

    More articles
    by this authors

    4

    Related content in the Bulletin of Forestry Science*

    More articles by this authors in the Bulletin of Forestry Science

    * Automatically generated recommendations based on the occurrence of keywords given by authors in the titles and abstracts of other articles. For more detailed search please use the manual search.