Bulletin of Forestry Science / Volume 1 / Issue 1 / Pages 45-57
previous article | next article

Riparian forest impact onto streamflow recession curve and its meaning

Péter Kalicz, Zoltán Gribovszki & Géza Király

Correspondence

Correspondence: Kalicz Péter

Postal address: H-9400 Sopron, Bajcsy-Zsilinszky u. 4.

e-mail: kaliczp[at]emk.nyme.hu

Abstract

In rainless periods groundwater feeds streamflow and on the falling limb of the streamflow hydrograph a recession curve can be detected. Lot of important information can be deduced from the recession curve. One of the simplest model of a catchment water resources recession is an exponential curve fitting to the falling limb of a hydrograph as a linear reservoir model.
From steepness of streamflow recession curves catchment scale hydraulic conductivity value can be calculated. Riparian vegetation (especially preatophyte riparian forest) use generally large amount of groundwater resources for transpiration, so it has a significant effect on the steepness of the recession curve in the growing season. Therefore only dormant season (transpiration-free) recession curves can be used for estimation of hydraulic parameters. The apparent residence time (inverse of the recession curve steepness) changes parallel with the transpiration intensity during the growing season.
Groundwater evapotranspiration of the riparian zone can be estimated from the steepness of recession curves in the growing season using the combination of the linear storage model and the catchment groundwater balance.
The groundwater evapotranspiration estimation method was tested in streamflow time series of the two neighboring subcathment (Farkas Valley and the Vadkan Valley) of the fully forest covered Hidegvíz Valley experimental catchment, located in the Sopron Hills (Hungary). On the basis of recession curves 5.8 and 6.2 mm/day growing season mean groundwater evapotranspiration can be calculated between 2000 and 2005 for the dry periods. The method gives fairly high but reasonable groundwater evapotranspiration compared to other evapotranspiration estimations in case of similar riparian forests.

Keywords: groundwater evapotranspiration, riparian forest, recession curve, linear storage model

  • Boussinesq, J. 1877: Essai sur la théorie des eaux courantes. Mémoires présentés par divers savants a l'Academie des Sciences de l'Institut National de France No. l.
  • Brutsaert, W. 2005: Hydrology – an Introduction. Cambridge University Press, ISBN-13 978-0-521-82479-8. p. 605.
  • Federer, C.A. 1973: Forest transpiration greatly speeds streamflow recession.Water Resources Research 9(6): 1599–1604. DOI: 10.1029/wr009i006p01599
  • Gribovszki, Z.; Kalicz, P.; Szilágyi, J. and Kucsara, M. 2008: Riparian zone evapotranspiration estimation from diurnal groundwater level fluctuations. Journal of Hydrology 349: 6–17. DOI: 10.1016/j.jhydrol.2007.10.049
  • Gribovszki Z.; Kalicz P. és Szilágyi J. 2010: Talajvíz evapotranszspiráció számítása a vízhozamok napi periódusú ingadozása alapján. Hidrológiai Közlöny 90 (5): 19–28.
  • Jenson S. K. and J. O. Domingue. 1988: Extracting Topographic Structure from Digital Elevation Data for Geographic Information System Analysis. Photogrammetric Engineering and Remote Sensing 54 (11): 1593–1600.
  • Kisházi P. és Ivancsics J. 1981–1985: Sopron környéki üledékek összefoglaló földtani értékelése (ottnangientől a holocénig; morfológia). Technical report, Központi Bányászati Fejlesztési Intézet Petrográfia, Sopron.
  • Monteith, J. L. 1965: Evaporation and environment. In: The State and Movement of Water in Living Organism (Proc. 19th Symp. Soc. Exp. Biol., Swansea 1964), 205–234. Academic Press, for The Society for Experimental Biology, UK.
  • Mitsch, W. J. and Gosselink, J. G. 2000: Wetlands. Wiley, New York. ISBN 0-471-29232-X, p. 920.
  • Priestley, C. H. and Taylor, R. J. 1972: On the assessment of surface heat flux and evaporation using large scale parameters. Monthly Weather Review 100: 81–92. DOI: 10.1175/1520-0493(1972)100<0081:otaosh>2.3.co;2
  • Storcz Cs. 2006: A talajvíz és a patak-menti ökoszisztémák kapcsolatának vizsgálata, a Sopron melletti Hidegvíz-völgyben. Szakdolgozat, Természetvédelmi Mérnöki Szak, Nyugat-magyarországi Egyetem, Sopron. p. 51.
  • Tallaksen, L. M. 1995: A review of baseflow recession analysis. Journal of Hydrology 165: 349–370. DOI: 10.1016/0022-1694(95)92779-d
  • TóthA. 2007: Vízkedvelő erdőállományok és a talajvíz kapcsolatának elemzése a Sopron melletti Hidegvíz-völgyben. Szakdolgozat, Természetvédelmi Mérnöki Szak, Nyugat-magyarországi Egyetem, Sopron. p. 45.
  • Török A. 2008: A vízviszonyok és a levélfelület kapcsolatának vizsgálata és ennek természetvédelmi vonatkozásai patak menti ökoszisztémákban. Szakdolgozat, Természetvédelmi Mérnöki Szak, Nyugat-magyarországi Egyetem, Sopron.
  • Zecharias, Y. B. and Brutsaert, W. 1988: Recession Characteristics of Groundwater Outflow and Base Flow From Mountainous Watersheds, Water Resources Research, 24(10): 1651–1658. DOI: 10.1029/wr024i010p01651
  • Open Acces

    For non-commercial purposes, let others distribute and copy the article, and include in a collective work, as long as they cite the author(s) and the journal, and provided they do not alter or modify the article.

    Cite this article as:

    Kalicz, P., Gribovszki, Z. & Király, G. (2011): Riparian forest impact onto streamflow recession curve and its meaning. Bulletin of Forestry Science, 1(1): 45-57. (in Hungarian)

    Volume 1, Issue 1
    Pages: 45-57

    First published:
    1 September 2011

    Related content

    4

    More articles
    by this authors

    3

    Related content in the Bulletin of Forestry Science*

    More articles by this authors in the Bulletin of Forestry Science

    * Automatically generated recommendations based on the occurrence of keywords given by authors in the titles and abstracts of other articles. For more detailed search please use the manual search.