Bulletin of Forestry Science / Volume 11 / Issue 2 / Pages 83-94
previous article |

A forest monitoring plan of Farkas-erdő of Sárvár based on Sentinel-2 satellite images

Tamás Molnár & Géza Király

Correspondence

Correspondence: Molnár Tamás

Postal address: H-1227 Budapest Pf. 17.

e-mail: molnar-tamas[at]uni-sopron.hu

Abstract

The satellite based remote sensing forest monitoring system of Farkas-erdő of Sárvár was created to utilize high resolution ESA Sentinel-2 images and cloud computing, where processing, analysing, and displaying of health state changes of forests takes place online, in the Google Earth Engine. The system aims to monitor the forest health state change constantly with high precision in the investigation period of 2017–2020, using maps and graphs based on vegetation and moisture indices. Remotely sensed data was compared to field-based damage reports for validation purposes.

Keywords: forest monitoring, remote sensing, Sentinel-2, satellite image, Google Earth Engine, cloud solutions

  • Amerikai Nemzeti Repülési és Űrhajózási Hivatal (NASA) 2022: MODIS Specifications. Online: URL
  • Európai Űrügynökség (ESA) 2022a: Sentinel-2 MSI, Radiometric Resolutions. Online: URL
  • Európai Űrügynökség (ESA) 2022b: Sentinel-3 OLCI, Radiometric Resolution – 21 bands in VIS/SWIR. Online: URL
  • Gao B.-C. 1996: NDWI – A normalized difference water index for remote sensing of vegetation liquid water from space. Remote Sensing of Environment, 58: 257–266. DOI: 10.1016/S0034-4257(96)00067-3
  • Gorelick N., Hancher M., Dixon M., Ilyushchenko S., Thau D. & Moore R. 2017: Google Earth Engine: Planetary-scale geospatial analysis for everyone. Remote Sensing of Environment, 202: 18-27. DOI: 10.1016/j.rse.2017.06.031
  • Hamunyela E., Rosca S., Mirt A., Engle E., Herold M., Gieseke F. & Verbesselt J. 2020: Implementation of BFASTmonitor Algorithm on Google Earth Engine to Support Large-Area and Sub-Annual Change Monitoring Using Earth Observation Data. Remote Sensing, 12(18): 2953. DOI: 10.3390/rs12182953
  • Huete A. R., K. Didan Y. E., Shimabukuro P., Ratana S. R., Saleska L. R., Hutyra W., Yang R. R., Nemani & R. Myneni 2006: Amazon rainforests green-up with sunlight in dry season. Geophysical Research Letters, 33: L06405. DOI: 10.1029/2005GL025583
  • Nemzeti Földügyi Központ Erdészeti Főosztálya (NFK EF) 2020: Országos Erdőkár Nyilvántartási Rendszer. Online: URL
  • Osei J.C., Andam-Akorful S. & Osei Jnr E. 2019: Long Term Monitoring of Ghana’s Forest Reserves Using Google Earth Engine. Preprints 2019, 2019090016. DOI: 10.20944/preprints201909.0016.v1
  • Somogyi Z., Koltay A., Molnár T. & Móricz N. 2018a: Forest health monitoring system in Hungary based on MODIS products. In: Molnár V. É. (ed): Az elmélet és a gyakorlat találkozása a térinformatikában IX.: theory meets practice in GIS, Debreceni Egyetem, IX. Térinformatika Konferencia és Szakkiállítás. Debrecen, ISBN 978-963-318-723-4, 325-330.
  • Somogyi Z., Koltay A., Molnár T. & Móricz N. 2018b: Távérzékelésen alapuló Erdőállapot Monitoring Rendszer (TEMRE). Erdészeti Lapok, 153(9): 277–279. full text
  • Chen S., Woodcock C., Bullock E., Arevalo P., Torchinava P., Peng S. & Olofsson P. 2021: Monitoring temperate forest degradation on Google Earth Engine using Landsat time series analysis. Remote Sensing of Environment, 265: 112648. DOI: 10.1016/j.rse.2021.112648
  • Open Acces

    For non-commercial purposes, let others distribute and copy the article, and include in a collective work, as long as they cite the author(s) and the journal, and provided they do not alter or modify the article.

    Cite this article as:

    Molnár, T. & Király, G. (2021): A forest monitoring plan of Farkas-erdő of Sárvár based on Sentinel-2 satellite images. Bulletin of Forestry Science, 11(2): 83-94. (in Hungarian) DOI: 10.17164/EK.2021.009

    Volume 11, Issue 2
    Pages: 83-94

    DOI: 10.17164/EK.2021.009

    First published:
    22 December 2021

    More articles
    by this authors

    1