Bulletin of Forestry Science / Volume 3 / Issue 1 / Pages 39-53
previous article | next article

Present and forecasted distribution of beech and sessile oak at the xeric climatic limits in Central Europe

Bálint Czúcz, László Gálhidy & Csaba Mátyás


Correspondence: Mátyás Csaba

Postal address: H-9400 Sopron, Bajcsy-Zsilinszky u. 4.

e-mail: cm[at]emk.nyme.hu


In order to project the effects of expected climatic changes, distribution of European beech (Fagus sylvatica) and sessile oak (Quercus petraea) were analysed at the xeric limits in Hungary. A fine-scale analysis was combined with sophisticated screening for climate-dependent (zonal) occurrences. For both species, temperature and precipitation conditions in late spring and summer appear as principal variables determining the probability of presence. For beech, the importance of Ellenberg’s climate quotient supports its sensitivity to summer drought. The calculated range shifts are drastic, similar to other results of statistic models. The applied approach allows a finer distinction of climatic threats on local scale and draws the attention to the urgency of preparative measures and application of proper silvicultural technologies.

Keywords: xeric limit, retracting limit, drought tolerance, climate change, climate niche modeling

  • Allen, C.D.; Macalady, A.K.; Chenchouni, H.; Bachelet, D.; McDowell, N.; Vennetier, M.; Kitzberger, T.; Rigling, A.; Breshears, D.D.; Hogg, E.H.; Gonzales, P.; Fensham, R.; Zhang, Z.; Castro, J.; Demidova, N.; Lim, J.H.; Allard, G.; Running, S.W.; Semerci, A. and Cobb, N. 2010: A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests. Forest Ecology and Management, 259: 660–684. DOI: 10.1016/j.foreco.2009.09.001
  • Araújo, M.B.; Whittaker, R.J.; Ladle, R.J. and Erhard, M. 2005: Reducing uncertainty in projections of extinction risk from climate change. Global Ecology and Biogeography, 14: 529–538. DOI: 10.1111/j.1466-822x.2005.00182.x
  • Araújo, M.B. and New, M. 2007: Ensemble forecasting of species distributions. Trends in Ecology and Evolution, 22: 42–47. DOI: 10.1016/j.tree.2006.09.010
  • Beaumont, L.J.; Pitman, A.J.; Poulsen M. and Hughes, L. 2007: Where will species go? Incorporating new advances in climate modelling into projections of species distributions. Global Change Biology, 13: 1368–1385. DOI: 10.1111/j.1365-2486.2007.01357.x
  • Benito Garzón, M.; Alía R.; Robson T. M.; and Zavala, M. A. 2011: Intra-specific variability and plasticity influence potential tree species distributions under climate change. Global Ecology and Biogeography, 20: 766–778. DOI: 10.1111/j.1466-8238.2010.00646.x
  • Berki, I.; Rasztovits, E.; Móricz, N. and Mátyás, Cs. 2009: Determination of the drought tolerance limit of beech forests and forecasting their future distribution in Hungary. Cereal Research Communications, 37: 613–616.
  • Berry, P. M.; Dawson, T. P.; Harrison, P. A. and Pearson, R. G. 2002: Modelling potential impacts of climate change on the bioclimatic envelope of species in Britain and Ireland. Global Ecology and Biogeography, 11: 453–462. DOI: 10.1046/j.1466-822x.2002.00304.x
  • Benito Garzón, M.; Sánchez de Dios, R. and Sainz Ollero, H. 2008: Effects of climate change on the distribution of Iberian tree species. Applied Vegetation Science, 11: 169–178. DOI: 10.3170/2008-7-18348
  • Bolliger, J.; Kienast, F. and Zimmermann, N. E. 2000: Risks of global warming on montane and subalpine forests in Switzerland – a modeling study. Regional Environmental Change, 1: 99–111. DOI: 10.1007/s101130000018
  • Bolte, A.; Czajkowski, T. and Kompa, T. 2007: The north-eastern distribution range of European beech – a review. Forestry, 80(4): 413–429. DOI: 10.1093/forestry/cpm028
  • Breiman, L.; Friedman, J.; Ohlsen, R. and Stone C. 1984: Classification and regression trees, Chapman Hall/CRC Press, New York.
  • Christensen, J.H.; Hewitson, B.; Busuioc, A.; Chen, A.; Gao, X.; Held, I.; Jones, R.; Kolli, R.K.; Kwon, W–T.; Laprise, R.; Magaña Rueda, V.; Mearns, L.; Menéndez, C.G.; Räisänen, J.; Rinke, A.; Sarr, A. and Whetton, P. 2007: Regional Climate Projections. In: Solomon, S.; Qin, D.; Manning, M., et al. (Eds.) Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, UK. 747–845.
  • Czajkowski, T.; Kuhling, M. and Bolte, A. 2005: Einfluss der Sommertrockenheit im Jahre 2003 auf das Wachstum von Naturverjüngungen der Buche (Fagus sylvatica L.) im nordöstlichen Mitteleuropa. Allgemeine Forst- und Jagdzeitung, 176: 133–143.
  • Czúcz, B.; Gálhidy, L. and Mátyás, Cs. 2011: Present and forecasted xeric climatic limits of beech and sessile oak distribution at low altitudes in Central Europe. Annals of Forest Science, 68(1): 99–108. DOI: 10.1007/s13595-011-0011-4
  • Csóka Gy.; Koltay A.; Hirka A. és Janik G. 2007: Az aszályosság hatása kocsánytalan tölgyeseink és bükköseink egészségi állapotára. In: Mátyás Cs. és Vig P. (szerk.): Erdő és klíma V. kötet, Sopron, 229–239.
  • Csóka Gy.; Koltay A.; Hirka A. és Janik G. 2009: Az aszályosság hatása kocsánytalan tölgyeseink és bükköseink egészségi állapotára. KlÍMA-21 füzetek, 57: 64–73.
  • Di Filippo, A.; Biondi, F.; Cufar, K. et al. 2007: Bioclimatology of beech (Fagus sylvatica L.) in the Eastern Alps: spatial and altitudinal climatic signals identified through a tree-ring network. Journal of Biogeography, 34: 1873–1892. DOI: 10.1111/j.1365-2699.2007.01747.x
  • Dittmar, C.; Zech, W. and Elling, W. 2003: Growth variations of common beech (Fagus sylvatica L.) under different climatic and environmental conditions in Europe – a dendroecological study. Forest Ecology and Management, 173: 63–78. DOI: 10.1016/s0378-1127(01)00816-7
  • Dormann, C. F. 2007: Promising the future? Global change projections of species distributions. Basic and Applied Ecology, 8: 387–397. DOI: 10.1016/j.baae.2006.11.001
  • Ellenberg, H. 1988: Vegetation ecology of Central Europe, 4th ed. Cambridge University Press.
  • Fang, J. and Lechovicz, M.J. 2006: Climatic limits for the present distribution of beech (Fagus L.) species in the world. Journal of Biogeography, 33: 1804–1819. DOI: 10.1111/j.1365-2699.2006.01533.x
  • Fielding, A.H. and Bell, J.F. 1997: A review of methods for the assessment of prediction errors in conservation presence/absence models. Environmental Conservation, 24: 38–49. DOI: 10.1017/s0376892997000088
  • Fischlin, A.; Midgley, G.F.; Price, J.T.; Leemans, R.; Gopal, B.; Turley, C.; Rounsevell, M.D.A.; Dube, O.P.; Tarazona, J. and Velichko, A.A. 2007: Ecosystems, their properties, goods, and services. In: Parry, M.L.; Canziani, O.F.; Palutikof, J.P. et al. (Eds.): Climate Change 2007: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, UK. 211–272.
  • Führer, E. und Járó, Z. 1992: Auswirkungen der Klimaänderung auf die Waldbestände Ungarns, Allgemeine Forstzeitung, 9: 25–27.
  • Führer E. 2010: A fák növekedése és a klíma. „Klíma-21” füzetek, 61:98–107.
  • Führer, E.; Horváth, L.; Jagodics, A.; Machon, A. and Szabados, I. 2011: Application of a new aridity index in Hungarian forestry practice. Időjárás, 115 (3): 205–216.
  • Gea-Izquierdo, G.; Martín-Benito, D.; Cherubini, P. and Canellas, I. 2009: Climate – growth variability in Quercus ilex L west Iberian open woodlands of different stand density. Annales of Forest Science, 66: 802. DOI: 10.1051/forest/2009080
  • Goslee S.C., Dean L., The ecodist package for dissimilarity-based analysis of ecological data, J. Stat. Software 22: (2007) Nr. 7.
  • Hampe, A. and Petit, R.J. 2005: Conserving biodiversity under climate change: the rear edge matters. Ecology Letters, 8: 461–467. DOI: 10.1111/j.1461-0248.2005.00739.x
  • Hothorn, T.; Hornik, K. and Zeileis, A. 2006a: Party: a laboratory for recursive partitioning. R package version 0.9–0.
  • Hothorn, T.; Hornik, K. and Zeileis, A. 2006b: Unbiased recursive partitioning: a conditional inference framework. Journal of Computer Graphraphics and Statistics, 15: 651–674. DOI: 10.1198/106186006x133933
  • Iverson, L.R. and Prasad, A. 2001: Potential changes in tree species richness and forest community types following climate change. Ecosystems, 4: 186–199. DOI: 10.1007/s10021-001-0003-6
  • Járó Z. 1972: A termőhely fogalma. In: Danszky I. (szerk.) Erdőművelés I. Mezőgazdasági Kiadó, Budapest, 47–79.
  • Jiménez-Valverde, A. and Lobo, J.M. 2007: Threshold criteria for conversion of probability of species presence to either – or presence – absence. Acta Oecologica, 31: 361–369. DOI: 10.1016/j.actao.2007.02.001
  • Jump, A.S.; Hunt, J.M. and Penuelas, J. 2006: Rapid climate change-related growth decline at the southern range edge of Fagus sylvatica. Global Change Biology, 12: 2163–2174. DOI: 10.1111/j.1365-2486.2006.01250.x
  • Jump, A.; Mátyás, Cs. and Penuelas, J. 2009: The paradox of altitude for latitude comparisons in species range retractions (review). Trends in Ecology and Evolution, 24(12): 694–700. DOI: 10.1016/j.tree.2009.06.007
  • Kölling, C. 2007: Klimahüllen von 27 Waldbaumarten. AFZ – der Wald 23: 1242–1244.
  • Koskela, J.; Buck, A. and Teissier du Cros, E. (Eds.) 2007: Climate change and forest genetic diversity: Implications for sustainable forest management in Europe. Biodiversity International, Rome, Italy.
  • Kramer, K.; Degen, B.; Buschboom, J.; Hickler, T.; Thuiller, W.; Sykes, M. and de Winter, W. 2010: Modelling exploration of the future of European beech (Fagus sylvatica L.) under climate change – range, abundance, genetic diversity and adaptive response. Forest Ecology and Management, DOI: 10.1016/j.foreco.2009.12.023
  • Lebourgeois, F.; Cousseau, G. and Ducos, Y. 2004: Climate-tree-growth relationships of a Quercus petraea stand in the forest of Bercé (“futaie des clos”, Sarthe, France). Annales of Forest Sciience, 61: 361–372. DOI: 10.1051/forest:2004029
  • Lebourgeois, F.; Bréda, N.; Ulrich, E. and Granier, A. 2005: Climate-tree-growth relationships of European beech (Fagus sylvatica L.) in the French permanent plot network (Renecofor). Trees – Structure and Function, 19: 385–401. DOI: 10.1007/s00468-004-0397-9
  • Legendre, P. and Fortin, M.J. 1989: Spatial pattern and ecological analysis. Vegetatio, 80(2): 107–138. DOI: 10.1007/bf00048036
  • Lenoir, J.; Gégout, J.C.; Pierrat, J.C.; Bontemps, J.D. and Dhote, J.F. 2009: Differences between tree species seedling and adult altitudinal distribution in mountain forests during the recent warm period (1986–2006). Ecography, 32: 765–777. DOI: 10.1111/j.1600-0587.2009.05791.x
  • Manel, S.; Williams, H.C. and Ormerod, S.J. 2001: Evaluating presence–absence models in ecology: the need to account for prevalence. Ecology, 38: 921–931. DOI: 10.1046/j.1365-2664.2001.00647.x
  • Mátyás, Cs. 2007: What do field trials tell about the future use of forest reproductive material? In: Koskela J.; Buck, A.; Teissier du Cros, E. (eds.): Climate change and forest genetic diversity: Implications for sustainable forest management in Europe. Biodiversity International Rome, Italy, 53–69.
  • Mátyás, Cs. 2010: Forecasts needed for retreating forests (opinion). Nature, 464: 1271. DOI: 10.1038/4641271a
  • Mátyás, Cs.; Vendramin, G.G. and Fady, B. 2009: Forests at the limit: evolutionary-genetic consequences of environmental changes at the receding (xeric) edge of distribution. Annals of Forest Science, 66: 800–803. DOI: 10.1051/forest/2009081
  • Mátyás Cs. és Gálos B. 2010: Erdőgazdálkodás és klimatikus szélsőségek: problémák és feladatok. „Klíma 21” füzetek, 63: 25–32.
  • Mátyás, Cs.; Nagy, L. and Ujvári-Jármay, É. 2010: Genetically set response of trees to climatic change, with special regard to the xeric (retreating) limits. Forstarchiv, 81: 130–141.
  • Mátyás, Cs.; Berki, I.; Czúcz, B.; Gálos, B.; Móricz, N. and Rasztovits, E. 2010: Future of beech in Southeast Europe from the perspective of evolutionary ecology. Acta Silvatica & Lignaria Hungarica, 6: 91–110. full text
  • Millar C.I., Stephenson N.L. and Stephens S.L. 2007: Climate change and forests of the future: managing in the face of uncertainty. Ecological Applications 17: 2145–2151. DOI: 10.1890/06-1715.1
  • Monserud, R.A. and Leemans, R. 1992: Comparing global vegetation maps with the kappa statistic. Ecological Modelling, 62: 275–293. DOI: 10.1016/0304-3800(92)90003-w
  • Ohlemüller, R.; Gritti, E.S.; Sykes, M.T. and Thomas, C.D. 2006: Quantifying components of risk for European woody species under climate change. Global Change Biology, 12: 1788–1799. DOI: 10.1111/j.1365-2486.2006.01231.x
  • Parry, M.L. and Carter, T.R. 1998: Climate Impact and Adaptation Assessment: A Guide to the IPCC Approach. Earthscan, London, UK. pp. 166.
  • Penuelas, J.; Ogaya, R.; Boada, M. and Jump, A.S. 2007: Migration, invasion and decline: changes in recruitment and forest structure in a warming-linked shift of European beech forest in Catalonia (NE Spain). Ecography, 30: 829–837. DOI: 10.1111/j.2007.0906-7590.05247.x
  • R Development Core Team 2007: R: a language and environment for statistical computing. R Foundation for Statistical Computing. Vienna, Austria. URL
  • Raftoyannis, Y. and Radoglou, K. 2002: Physiological responses of beech and sessile oak in a natural mixed stand during a dry summer. Annals of Botany, 89: 723–730. DOI: 10.1093/aob/mcf133
  • Rehfeldt, G.E.; Tchebakova, N.M.; Milyutin, L.I.; Parfenova, E.I.; Wykoff, W.R. and Kouzmina, N.A. 2003: Assessing population responses to climate in Pinus silvestris and Larix spp. of Eurasia with climate transfer models. Eurasian Journal of Forest Research, 6: 83–98.
  • Solomon, S.; Qin, D.; Manning M. et al. (eds.) 2007: Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the 4th Assessment Report of the IPCC, Cambridge University Press.
  • Sykes, M.T.; Prentice, I.C. and Cramer, W. 1996: A bioclimatic model for the potential distributions of north European tree species under present and future climates. Journal of Biogeography, 23: 203–233.
  • Thuiller, W.; Vayreda, J.; Pino, J.; Sabate, S.; Lavorel, S.; Gracia, C. 2003: Large-scale environmental correlates of forest tree distributions in Catalonia (NE Spain). Global Ecology and Biogeography 12(4): 313–325. DOI: 10.1046/j.1466-822x.2003.00033.x
  • Thuiller, W.; Albert, C.; Araújo, M. B.; Berry, P. M.; Cabeza, M.; Guisan, A.; Hickler, T.; Midgley, G.F.; Paterson, J.; Schurr, F.M.; Sykes, M.T. and Zimmermann, N.E. 2008: Predicting global change impacts on plant species’ distributions: Future challenges. Perspectives in Plant Ecology, Evolution and Systematics, 9: 137–152. DOI: 10.1016/j.ppees.2007.09.004
  • Zuur, A. F.; Leno, E. N. and Elphick, C. S. 2009: A protocol for data exploration to avoid common statistical problems. Methods in Ecology and Evolution, 1: 3–14. DOI: 10.1111/j.2041-210x.2009.00001.x
  • Open Acces

    For non-commercial purposes, let others distribute and copy the article, and include in a collective work, as long as they cite the author(s) and the journal, and provided they do not alter or modify the article.

    Cite this article as:

    Czúcz, B., Gálhidy, L. & Mátyás, Cs. (2013): Present and forecasted distribution of beech and sessile oak at the xeric climatic limits in Central Europe. Bulletin of Forestry Science, 3(1): 39-53. (in Hungarian)

    Volume 3, Issue 1
    Pages: 39-53

    First published:
    28 June 2013

    Related content


    More articles
    by this authors


    Related content in the Bulletin of Forestry Science*

    More articles by this authors in the Bulletin of Forestry Science

    * Automatically generated recommendations based on the occurrence of keywords given by authors in the titles and abstracts of other articles. For more detailed search please use the manual search.