Bulletin of Forestry Science / Volume 8 / Issue 2 / Pages 25-35
previous article | next article

Antioxidant system as a potential indicator of the climatic adaptation of beech (Fagus sylvatica L.)

Eszter Rajczi Visiné, Tamás Hofmann, Levente Albert & Csaba Mátyás

Correspondence

Correspondence: Visiné Rajczi Eszter

Postal address: H-9400 Sopron, Bajcsy-Zsilinszky u. 4.

e-mail: visine.rajczi.eszter[at]uni-sopron.hu

Abstract

The effect of simulated climate change was studied on populations of different beech (Fagus sylvatica L.) provenances. The climatic adaptation of six selected beech provenances (Farchau, Pidkamin, Torup, Gråsten, Bánokszentgyörgy, Magyaregregy), growing at the site of the beech provenance test of Bucsuta (H) were compared by the assessment of their enzymatic and non-enzymatic antioxidant system. The total protein content, peroxidase (POD) and polyphenol oxidase (PPO) enzyme activities as well as ABTS (2,2’-azino-bis-(3-etylbenzothiazoline)-6-sulfonic acid) antioxidant capacity were measured from the leaves of selected trees. The identification and quantitative determination of major leaf polyphenols was also determined from the same samples. By the comparative analysis of the enzymatic and non-enzymatic antioxidant systems of the provenances it was concluded that the selected chemical variables were suitable for the assessment of the climatic stress, simulated by the translocation of the investigated provenances. POD enzyme activity as well as total protein content and the concentrations of certian polyphenols could be potential chemical indicators of the adaptation process and could be used in the forecasting of the future effects of climate change and in the selection of propagation material in the future.

Keywords: leaf antioxidant system, oxidoreductase enzymes, polyphenols, Ellenberg index, climate change, beech provenance trials

  • Albert L., Hofmann T., Visi-Rajczi E., Rétfalvi T., Németh Zs. I., Koloszár J. et al. 2002: Relationships Among Total Phenol and Soluble Carbohydrate Contents And Activities of Peroxidase and Polyphenol Oxidase in Red-Heartwooded Beech (Fagus sylvatica L.). 7th European Workshop on Lignocellulosics and Pulp, Turku/Abo, Finnland, Proceedings 253–256.
  • Bradford M. M. 1976: A rapid sensitive method for the quantisation of microgram quantities of protein utilising the principle of protein-dye binding. Analytical Biochemistry 72: 248-254. DOI: 10.1006/abio.1976.9999
  • Czúcz B., Gálhidy L. & Mátyás Cs. 2013: A bükk és a kocsánytalan tölgy elterjedésének szárazsági határa. Erdészettudományi Közlemények 3: 39–53. full text
  • Del Río L. A. 2015: ROS and RNS in plant physiology: an overview. Journal of Experimental Botany 66 (10): 2827-37. DOI: 10.1093/jxb/erv099. Epub 2015 Apr 7
  • Dübeler A., Voltmer G., Gora V., Lunderstädt J. & Zeeck A. 1997: Phenols from Fagus sylvatica and their role in defence against Cryptococcus fagisuga. Phytochemistry 45: 51–57. DOI: 10.1016/s0031-9422(96)00771-6
  • Ellenberg H. 1988: Vegetation ecology of Central Europe, 4th ed. Cambridge University Press.
  • Fang J. & Lechovicz M. J. 2006: Climatic limits for the present distribution of beech (Fagus sylvatica L.) species in the world. Journal of Biogeography 33: 1804–1819. DOI: 10.1111/j.1365-2699.2006.01533.x
  • Flurkey W. H. & Jen J. J. 1978: Peroxidase and polyphenol oxidase activities in developing peaches. Journal of Food Science 43: 1826–1829. DOI: 10.1111/j.1365–2621.1978.tb07424.x
  • Hassan W., Noreen H., Rehman S., Gul S., Kamal M. A., Kamdem J. P. et al. 2017: Oxidative Stress and Antioxidant Potential of One Hundred Medicinal Plants. Current Topics in Medical Chemistry 17(12): 1336–1370. DOI: 10.2174/1568026617666170102125648
  • Hofmann T., Tálos-Nebehaj E. & Albert L. 2017: Leaf polyphenols as indicators of climatic adaptation of Beech (Fagus sylvatica L.) – an HPLC-MS/MS via MRM approach. International Labmate 42(3): 12–14.
  • Horváth A. & Mátyás Cs. 2014: Növedékcsökkenés előrevetítése egy bükk származási kísérlet alapján. Erdészettudományi Közlemények 4(2): 91–99. full text
  • Horváth A. & Mátyás Cs. 2016: The Decline of Vitality Caused by Increasing Drought in a Beech Provenance Trial Predicted by Juvenile Growth. South-east European Forestry 7(1): 21–28. DOI: 10.15177/seefor.16–06
  • Mátyás Cs. 1994: Modelling climate change effects with provenance test data. Tree Physiology 14: 797–804. DOI: 10.1093/treephys/14.7-8-9.797
  • Puccinelli P., Anselmi N. & Bragaloni M. 1998: Peroxidases: suitable markers of air pollution in trees from urban environments. Chemosphere 36(4–5): 889–894. DOI: 10.1016/s0045-6535(97)10143-6
  • Shannon L. M., Kay E. & Lew J. Y. 1966: Peroxidase isoenzymes from horseradish roots. The Journal of Biological Chemistry 241: 2166–2172.
  • Sies H. 1991: Oxidative stress: from basic research to clinical application. American Journal of Medicine 91 (3C): 31–38. DOI: 10.1016/0002-9343(91)90281-2
  • Stratil P., Klejdus B. & Kuban V. 2007: Determination of phenolic compounds and their antioxidant activity in fruits and cereals. Talanta 71: 1741–1751. DOI: 10.1016/j.talanta.2006.08.012
  • Tausz M., Šircelej H. & Grill D. 2004: The glutathione system as a stress marker in plant ecophysiology: is a stressresponse concept valid? Journal of Experimental Botany 55 (404): 1955–1962. DOI: 10.1093/jxb/erh194
  • Visiné Rajczi E., Hofmann T. & Albert L. 2017: Peroxidáz és polifenol-oxidáz enzim aktivitás és az összfehérje tartalom, mint a bükk (Fagus sylvatica L.) klimatikus adaptációjának lehetséges indikátorai. In: Bidló A. & Facskó F. (eds): Soproni Egyetem Erdőmérnöki Kar VI. Kari Tudományos Konferencia Absztraktkötet. Soproni Egyetem Kiadó, Sopron, 260–263.
  • Zolfaghari R., Hosseini S. M. & Korori S. A. A. 2010: Relationship between peroxidase and catalase with metabolism and environmental factors in Beech (Fagus orientalis Lipsky) in three different elevations. International Journal of Environmental Sciences 1: 243–252.
  • Open Acces

    For non-commercial purposes, let others distribute and copy the article, and include in a collective work, as long as they cite the author(s) and the journal, and provided they do not alter or modify the article.

    Cite this article as:

    Visiné, R. E., Hofmann, T., Albert, L. & Mátyás, Cs. (2018): Antioxidant system as a potential indicator of the climatic adaptation of beech (Fagus sylvatica L.). Bulletin of Forestry Science, 8(2): 25-35. (in Hungarian) DOI: 10.17164/EK.2018.019

    Volume 8, Issue 2
    Pages: 25-35

    DOI: 10.17164/EK.2018.019

    First published:
    17 September 2018

    Related content

    1

    More articles
    by this authors

    8

    Related content in the Bulletin of Forestry Science*

    More articles by this authors in the Bulletin of Forestry Science

    * Automatically generated recommendations based on the occurrence of keywords given by authors in the titles and abstracts of other articles. For more detailed search please use the manual search.