Bulletin of Forestry Science / Volume 4 / Issue 2 / Pages 91-99
previous article | next article

Estimation of increment decline caused by climate change, based on data of a beech provenance trial

Anikó Horváth & Csaba Mátyás

Correspondence

Correspondence: Mátyás Csaba

Postal address: H-9400 Sopron, Bajcsy-Zsilinszky u. 4.

e-mail: cm[at]emk.nyme.hu

Abstract

Out of the 1998 series of the international beech provenance trials, one experiment was established in Bucsuta, SW Hungary. The site is close to the low-elevation, xeric distributional limit of the species. The climatic conditions are the most extreme compared with other experiments. Bucsuta is therefore the most suitable site to model responses of populations to sudden climatic changes, simulated by transfer. Plot averages of 15-year diameter, measured on the 5 largest trees per plot were analyzed. Out of the climatic variables, the ones determined by summer temperatures (Tmax, TQW) and drought conditions (DMI, EQ) were significant. Not surprisingly, Ellenberg’s drought index has shown the best correlation and was selected for the characterization of ecodistance. The climatic distance between the provenance origin and the test site, and the 15-year diameter data were used to establish a linear transfer function of high significance (p=0.0006). The regression (Fig. 3) indicates a monotonous decline which has no maximum value at “0” ecodistance, and may be used for the estimation of growth decline caused by changing climatic conditions.

Keywords: common garden, Ellenberg’s climate quotient, xeric limit, adaptation, genetic variability

  • Czúcz B.; Gálhidy L. és Mátyás Cs. 2013: A bükk és a kocsánytalan tölgy elterjedésének szárazsági határa. Erdészettudományi Közlemények, 3: 39–53. full text
  • Davis, M. E.; Shaw, R. G. and Etterson, J. R. 2005: Evolutionary responses to climate change. Ecology, 86: 1704–1714.
  • De Martonne, E. 1941: Nouvelle carte mondiale de l’indice d’aridité. Annales de Géographie, 51: 242–250. DOI: 10.3406/geo.1942.12050
  • Ellenberg, H. 1986: Vegetation Mitteleuropas mit den Alpen. 4th Edition. Fischer, Stuttgart, Germany.
  • Fang, J. and Lechovicz, M.J. 2006: Climatic limits for the present distribution of beech (Fagus sylvatica L.) species in the world. Journal of Biogeography, 33: 1804–1819. DOI: 10.1111/j.1365-2699.2006.01533.x
  • Führer E. 2010: A fák növekedése és a klíma. Klíma 21 füzetek, 61: 98–107.
  • Gálos B.; Mátyás Cs.; Führer E.; Berki I.; Lakatos F.; Csóka Gy.; Drüszler Á.; Móricz N.; Rasztovits E.; Somogyi Z.; Veperdi G. és Vig P. 2010: Erdők a szárazsági határon. Klíma 21 füzetek, 61: 84–97.
  • Gorczinski, W. 1920: Sur le calcul du degré de continentalisme et son application dans la climatologie. Geografiska Annaler, 2: 324–331. DOI: 10.2307/519539
  • Hlásny, T.; Barcza, Z.; Mátyás, Cs.; Seidl, R.; Kulla, L.; Merganičová, K.; Trombik, J.; Dobor, L. and Konoˆpka, B. 2014: Climate change increases the drought risk in Central European forests: What are the options for adaptation? Lesnícky časopis – Forestry Journal, 60: 5–18. DOI: 10.2478/forj-2014-0001
  • Jezik, M.; Blazenec, M.; Strelcová, K. and Ditmarová L. 2011: The impact of the 2003–2008 weather variability on intra-annual stem diameter changes of beech trees at a submontane site in central Slovakia. Dendrochronologia, 29: 227–235. DOI: 10.1016/j.dendro.2011.01.009
  • Jung, T. 2009: Beech decline in Central Europe driven by the interaction between Phytophthora infections and climatic extremes. Forest Pathology, 39: 73–94. DOI: 10.1111/j.1439-0329.2008.00566.x
  • Lakatos, F. and Molnár, M. 2009: Mass mortality of beech in Southwest Hungary. Acta Silvatica et Lignaria Hungarica, 5: 75–82. full text
  • Mátyás, Cs. 1994: Modelling climate change effects with provenance test data. Tree Physiology, 14: 797–804. DOI: 10.1093/treephys/14.7-8-9.797
  • Mátyás, Cs. 2005: Expected climate instability and its consequences for conservation of forest genetic resources. In: Geburek, Th.; and Turok J. (eds): Conservation and management of forest genetic resources in Europe. Arbora Publishers, Zvolen, 465–476.
  • Mátyás Cs. és Yeatman C. W. 1987: A magassági növekedés adaptív változatosságának vizsgálata P. banksiana populációkban. Erdészeti és Faipari Egyetem Tudományos Közleményei, 1: 191–197.
  • Mátyás, Cs.; Bozic, G.; Gömöry, D.; Ivankovic, M. and Rasztovits, E. 2009: Juvenile growth response of European beech (Fagus sylvatica L.) to sudden change of climatic environment in SE European trials. iForest, 2: 213–220. DOI: 10.3832/ifor0519-002
  • Mátyás, Cs.; Borovics, A.; Nagy, L. and Újvári-Jármay, É. 2010: Genetically set response of trees to climatic change, with special regard to the xeric (retreating) limits. Forstarchiv, 81: 130–141.
  • Rasztovits, E.; Móricz, N.; Berki, I.; Pötzelsberger, E. and Mátyás, Cs. 2012: Evaluating the performance of stochastic distribution models for European beech at low-elevation xeric limits. Időjárás / Quarterly Journal of the Hungarian Meteorological Service, 116: 173–194.
  • Wühlisch, G. von 2007: Series of international provenance trials of European beech. In: Improvement and Silviculture of Beech, Proc. the 7th Intern. Beech Symp. IUFRO Res. Gr.1.10.00, RIFR, Teheran, Iran 135–144.
  • Open Acces

    For non-commercial purposes, let others distribute and copy the article, and include in a collective work, as long as they cite the author(s) and the journal, and provided they do not alter or modify the article.

    Cite this article as:

    Horváth, A. & Mátyás, Cs. (2014): Estimation of increment decline caused by climate change, based on data of a beech provenance trial. Bulletin of Forestry Science, 4(2): 91-99. (in Hungarian)

    Volume 4, Issue 2
    Pages: 91-99

    First published:
    6 October 2014

    Related content

    10

    More articles
    by this authors

    5

    Related content in the Bulletin of Forestry Science*

  • Visiné, R. E., Hofmann, T., Albert, L. & Mátyás, Cs. (2018): Antioxidant system as a potential indicator of the climatic adaptation of beech (Fagus sylvatica L.). Bulletin of Forestry Science, 8(2): 25-35.
  • Mátyás, Cs., Kóczán-Horváth, A., Antoine, K. & Cuauhtémoc, S. (2018): Juvenile height growth response of sessile oak populations to simulated climatic change based on provenance test data. Bulletin of Forestry Science, 8(1): 131-148.
  • Gálos, B. & Somogyi, Z. (2017): New climate scenarios – smaller drought risk for European beech?. Bulletin of Forestry Science, 7(2): 85-98.
  • Führer, E., Edelényi, M., Jagodics, A., Jereb, L., Horváth, L., Kern, Z., Móring, A., Szabados, I. & Pödör, Z. (2016): Effect of weather conditions on the annual basal area increment of a beech stand of old age. Bulletin of Forestry Science, 6(1): 61-78.
  • Garamszegi, B. & Kern, Z. (2016): Basal area growth trends of Hungarian beech forests in a changing climate. Bulletin of Forestry Science, 6(1): 35-44.
  • Illés, G. & Fonyó, T. (2016): Assessing the expected impact of climate change on forest yield potential in the AGRAGIS project. Bulletin of Forestry Science, 6(1): 25-34.
  • Mátyás, Cs. & Kramer, K. (2016): Adaptive management of forests and their genetic resources in the face of climate change. Bulletin of Forestry Science, 6(1): 7-16.
  • Veperdi, G. (2014): Determination of site quality index based on the mean annual increment of the growing stock at or near the rotation age. Bulletin of Forestry Science, 4(2): 101-107.
  • Czúcz, B., Gálhidy, L. & Mátyás, Cs. (2013): Present and forecasted distribution of beech and sessile oak at the xeric climatic limits in Central Europe. Bulletin of Forestry Science, 3(1): 39-53.
  • Führer, E., Marosi, Gy., Jagodics, A. & Juhász, I. (2011): A possible effect of climate change in forest management. Bulletin of Forestry Science, 1(1): 17-28.
  • More articles by this authors in the Bulletin of Forestry Science

    * Automatically generated recommendations based on the occurrence of keywords given by authors in the titles and abstracts of other articles. For more detailed search please use the manual search.