Bulletin of Forestry Science / Volume 8 / Issue 1 / Pages 11-25
previous article | next article

50 years trends of the forest drought damage in Hungary (1962-2011)

Anikó Hirka, Zoltán Pödör, Balázs Garamszegi & György Csóka

Correspondence

Correspondence: Hirka Anikó

Postal address: H-3232 Mátrafüred, Hegyalja u. 18.

e-mail: hirkaa[at]erti.hu

Abstract

The frequency of droughts increased in Hungary between 1962 and 2011. On top of this increasing trend, the extreme droughts had become more and more frequent. As a response for this, forest drought damage also showed an increasing trend. The yearly values of the forest drought damage showed a significant response for the yearly values of two drought indices (Pálfai and Forest Aridity index). Drought damage is reported not only from younger lowland stands, but also from older native stands of montane regions. It is proven that droughts play a decisive role in the health of sessile oak and beech stands. On top of their direct impacts, droughts have major indirect effects on forest health, manifesting in “damage chains”. Droughts regularly have positive effects on outbreaks of many forest insects. The trees and stands weakened by drought stress can successfully be attacked by pathogens which are less aggressive amid better weather conditions. If the frequency and severity of droughts (and other weather extremes) increase (as it is predicted), our forests will suffer from an even higher damage pressure, so further negative health trends can be predicted in Hungarian forests. Therefore the forest management/sylviculture should aim at increasing forest resistance/resilience. The reactive forest protection should be changed for a long term proactive approach.

Keywords: forest drought damage, drought indices, drought stress, damage chain, increasing damage pressure

  • Allen C.D., Macalady A.K., Chenchouni H., Bachelet D., McDowell N., Vennetier M., et al. 2010: A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests. Forest Ecology and Management 259: 660–684. DOI: 10.1016/j.foreco.2009.09.001
  • Assal T.J., Anderson P.J. & Sibold J. 2016: Spatial and temporal trends of drought effects in a heterogeneous semi-arid forest ecosystem. Forest Ecology and Management 365: 137–151. DOI: 10.1016/j.foreco.2016.01.017
  • Bendixsen D.P., Hallgren S.W. & Frazier A.E. 2015: Stress factors associated with forest decline in xeric oak forests of south-central United States. Forest Ecology and Management 347: 40–48. DOI: 10.1016/j.foreco.2015.03.015
  • Bréda N., Huc R., Granier A. & Dreyer E. 2006: Temperate forest trees and stands under severe drought: a review of ecophysiological responses, adaptation processes and long-term consequences. Annals of Forest Science 63: 625–644. DOI: 10.1051/forest:2006042
  • Bús M. 1995: Az erdei aszálykár és a fafajok szárazságtűrésének vizsgálata a Bakonyban és a Balaton-felvidéken. In: Tar K., Berki I. & Kiss Gy. (eds): Erdő és klíma I. kötet, Noszvaj, 209–216.
  • Carnicer J., Coll M., Ninyerola M., Pons X., Sánchez G. & Penuelas J. 2011: Widespread crown condition decline, food web disruption, and amplified tree mortality with increased climate change-type drought. Proceedings of the National Academy of Sciences 1–5. DOI: 10.1073/pnas.1010070108
  • Csóka Gy. 1996: Aszályos évek-fokozódó rovarkárok erdeinkben. Növényvédelem 32(11): 545–551.
  • Csóka Gy. 1997a: Aszályosság és az erdei rovarkárok. In: Tar K. & Szilágyi K. (eds): Erdő és Klíma II. kötet, Sopron, 90–93.
  • Csóka Gy. 1997b: Increased insect damage in Hungarian forests under drought impact. Biologia 52(2): 1–4.
  • Csóka Gy. & Hirka A. 2009: A gyapjaslepke (Lymantria dispar L.) legutóbbi tömegszaporodása Magyarországon. Növényvédelem 45(4): 196–201.
  • Csóka Gy. & Hirka A. 2011: Alien and invasive forest insects in Hungary (a review). In: Delb H. & Pontuali S. (eds): Biotic Risks and Climate Change in Forests, Proceedings of the 10th IUFRO Workshop of WP 7.03.10 "Methodology of Forest Insect and Disease Survey in Central Europe", September 20-23, 2010, Freiburg, Germany, 54–60.
  • Csóka Gy., Hirka A. & Szőcs L. 2012: Rovarglobalizáció a magyar erdőkben. Erdészettudományi közlemények 2(1): 187–198. full text
  • Csóka Gy., Hirka A., Szőcs L., Móricz N., Rasztovits E. & Pödör Z. 2018: Weather-dependent fluctuations in the abundance of the oak processionary moth, Thaumetopoea processionea (Lepidoptera: Notodontidae). European Journal of Entomology 115: 249–255. DOI: 10.14411/eje.2018.024
  • Csóka Gy., Koltay A., Hirka A. & Janik G. 2007: Az aszályosság hatása kocsánytalan tölgyeseink és bükköseink egészségi állapotára. In: Mátyás Cs. & Vig P. (eds): Erdő és klíma V. kötet, Sopron, 229–239.
  • Csóka Gy., Koltay A., Hirka A. & Janik G. 2009: Az aszályosság hatása kocsánytalan tölgyesek és bükkösök egészségi állapotára. Klíma-21 Füzetek 57: 64–73.
  • Csóka Gy. & Leskó K. 1995: Klimatikus anomáliákat indikáló erdei rovarok. In: Tar K., Berki I. & Kiss Gy. (eds): Erdő és klíma I. kötet, Noszvaj, 163–170.
  • Csóka Gy., Pödör Z., Nagy Gy. & Hirka A. 2015: Canopy recovery of pedunculate oak, Turkey oak and beech trees after severe defoliation by gypsy moth (Lymantria dispar): Case study from Western Hungary. Forestry Journal (Lesnicki Casopis) 61: 143–148. DOI: 10.1515/forj-2015-0022
  • Führer E. 1995: Az időjárás változásának hatása az erdő fatermő képességére és egészségi állapotára. Erdészeti Lapok 130(6): 176–178. full text
  • Führer E., Horváth L., Jagodics A., Machon A. & Szabados I. 2011: Application of a new aridity index in Hungarian forestry practice. Időjárás 115(3): 205–2016.
  • Gálos B., Lorenz Ph. & Jacob D. 2007: Will dry events occur more often in Hungary in the future? Environmental Research Letters 2(3): 034006. DOI: 10.1088/1748-9326/2/3/034006
  • Hirka A. & Csóka Gy. 2010: Abiotikus károk Magyarország erdeiben. Növényvédelem 46(11): 513–517.
  • Hirka A., Csóka Gy. & Szabóky Cs. 2009: Mit gondolnak az erdei rovarok a klímaváltozásról? In: Lakatos F. & Kui B. (eds): NYME Erdőmérnöki Kar, Kari Tudományos Konferencia Kiadvány, Sopron, 172–175.
  • Hlásny T., Mátyás Cs., Seidl R., Kulla L., Merganičova K., Trombik J., et al. 2014: Climate change increases the drought risk in Central European forests: What are the options for adaptation? Forestry Journal (Lesnicki Casopis) 60: 5–18. DOI: 10.2478/forj-2014-0001
  • Hubbart J.A., Guyette R. & Muzika R-M. 2016: More than Drought: Precipitation Variance, Excessive Wetness, Pathogens and the Future of the Western Edge of the Eastern Deciduous Forest. Science of Total Environment 566-567: 463–467. DOI: 10.1016/j.scitotenv.2016.05.108
  • Janik G., Hirka A., Koltay A., Juhász J. & Csóka Gy. 2016: 50 év biotikus kárai a magyar bükkösökben. Erdészettudományi Közlemények 6(1): 45–60. DOI: 10.17164/EK.2016.005
  • Jurc D., Jurc M., Sieber T.N. & Bojovic S. 2000: Endophytic Cenangium ferruginosum (Ascomycota) as a Reservoir for an Epidemic of Cenangium Dieback in Austrian Pine. Phyton, Special issue: "Root-soil interactions" 40(4): 103–108.
  • Jurc D. & Ogris N. 2006: First reported outbreak of charcoal disease caused by Biscogniauxia mediterranea on Turkey oak in Slovenia. Plant Pathology 55: 299. DOI: 10.1111/j.1365-3059.2005.01297.x
  • Klapwijk M.J., Csóka Gy., Hirka A. & Björkman Ch. 2013: Forest insects and climate change: long-term trends in herbivore damage. Ecology and Evolution 3(12): 4183–4196. DOI: 10.1002/ece3.717
  • Kolb T.E., Fettig Ch.J., Ayres M.P., Bentz B.J., Hicke J.A., Mathiasen R., et al. 2016: Observed and anticipated impacts of drought on forest insects and diseases in the United States. Forest Ecology and Management DOI: 10.1016/j.foreco.2016.04.051
  • Koltay A. 1995: Abiotikus és biotikus tényezők szerepe a feketefenyő állományok pusztulásában. In: Tar K., Berki I. & Kiss Gy. (eds): Erdő és klíma I. kötet, Noszvaj, 236–240.
  • Koltay A. 2002: A magyarországi feketefenyő hajtáspusztulás történeti áttekintése. Erdészeti Kutatások 90: 247–254.
  • Kunca A. & Leontovic R. 2013: Pines dieback caused by Cenangium ferruginosum Fr. in Slovakia in 2012. Folia Oecologica 40(2): 220–224.
  • Lakatos F. & Molnár M. 2009: Mass mortality of beech (Fagus sylvatica) in South-West Hungary. Acta Silvatica & Lignaria Hungarica 5: 75–82. full text
  • Leskó K., Szentkirályi F. & Kádár F. 1994: Gyapjaslepke (Lymantria dispar L.) populációk fluktuációs mintázatai 1963-1993 közötti időszakban Magyarországon. Erdészeti Kutatások 84: 163–176.
  • Lindner M., Fitzgerald J. B., Zimmermann N. E., Reyer Ch., Delzon S., van der Maaten E., et al. 2014: Climate change and European forests: What do we know, what are the uncertainties, and what are the implications for forest management? Journal of Environmental Management 146: 69–83. DOI: 10.1016/j.jenvman.2014.07.030
  • Mares C. & Mares I. 1994: Climate change-points in the precipitation time series from Romania. In: Atmospheric Physics and Dynamics in the Analysis and Prognosis of Precipitation Fields (Proceedings of the meeting), Rome, 176–180.
  • Mattson J.W. & Haack R.A. 1987: The Role of Drought in Outbreaks of Plant-eating Insects. Bioscience 37: 110–118. DOI: 10.2307/1310365
  • Mátyás Cs., Führer E., Berki I., Csóka Gy., Drüszler Á., Lakatos F., et al. 2010: Erdők a szárazsági határon. Klíma-21 Füzetek 61: 84–97.
  • Molnár M., Brück-Dyckhoff C., Petercord R. & Lakatos F. 2010: A zöld karcsúdíszbogár (Agrilus viridis L.) szerepe a bükkösök pusztulásában. Növényvédelem 46(11): 522–528.
  • Muukonen P., Nevalainen S., Lindgren M. & Peltoniemi M. 2015: Spatial occurrence of drought-associated damages in Finnish boreal forests: results from forest condition monitoring and GIS analysis. Boreal Environment Research 20: 172–180.
  • Pálfai I. 2002: Az aszály befolyásoló tényezői és mérőszámai. Vízügyi Közlemények 3: 258–263.
  • Pernek M., Novak Agbaba S., Lackovic N., Dod N., Lukic I. & Wirth S. 2012: The role of biotic factors on pine (Pinus spp.) decline in north Dalmatia. Sumarski list 136: 343–354.
  • Poulos H.M. 2014: Tree mortality from a short-duration freezing event and global-change-type drought in a Southwestern piñon-juniper woodland, USA. PeerJ 2: e404. DOI: 10.7717/peerj.404
  • Schwantes A.M., Swenson J.J. & Jackson R.B. 2016: Quantifying drought-induced tree mortality in the open canopy woodlands of central Texas. Remote Sensing of Environment 181: 54–64. DOI: 10.1016/j.rse.2016.03.027
  • Sneyers R. 1992: On the use of statistical analysis for the objective determination of climate change. Meteorologische Zeitschrift 1(5): 247–256. DOI: 10.1127/metz/1/1992/247
  • Suarez M.L., Ghermandi L. & Kitzberger Th. 2004: Factors predisposing episodic drought-induced tree mortality in Nothofagus – site, climatic sensitivity and growth trends. Journal of Ecology 92: 954–966. DOI: 10.1111/j.1365-2745.2004.00941.x
  • Szentkirályi F., Leskó K. & Kádár F. 1994: Jeleznek-e klímaváltozást a fénycsapdás rovargyűjtések? In: Tar K., Berki I. & Kiss Gy. (eds): Erdő és klíma I. kötet, Noszvaj, 171–177.
  • Szentkirályi F., Leskó K. & Kádár F. 1997: Aszályos évek hatása rovarpopulációk hosszú távú fluktuációs mintázatára. In: Tar K. & Szilágyi K. (eds) 1997: Erdő és Klíma II. kötet, Sopron, 94–98.
  • Thomas F.M., Blank R. & Hartmann G. 2002: Abiotic and biotic factors and their interactions as causes of oak decline in Central Europe. Forest Pathology 32: 277–307. DOI: 10.1046/j.1439-0329.2002.00291.x
  • Vettraino A.M., Barzanti G.P., Bianco M.C., Ragazzi A., Capretti P., Paoletti E., et al. 2002: Occurrence of Phytophthora species in oak stands in Italy and their association with declining oak trees. Forest Pathology 32: 19–28. DOI: 10.1046/j.1439-0329.2002.00264.x
  • Szalai S., Auer I., Hiebl J., Milkovich J., Radim T. Stepanek P., et al. 2013: Climate of the Greater Carpathian Region. Final Technical Report. URL
  • Open Acces

    For non-commercial purposes, let others distribute and copy the article, and include in a collective work, as long as they cite the author(s) and the journal, and provided they do not alter or modify the article.

    Cite this article as:

    Hirka, A., Pödör, Z., Garamszegi, B. & Csóka, Gy. (2018): 50 years trends of the forest drought damage in Hungary (1962-2011). Bulletin of Forestry Science, 8(1): 11-25. (in Hungarian) DOI: 10.17164/EK.2018.001

    Volume 8, Issue 1
    Pages: 11-25

    DOI: 10.17164/EK.2018.001

    First published:
    28 May 2018

    Related content

    5

    More articles
    by this authors

    15

    Related content in the Bulletin of Forestry Science*

    More articles by this authors in the Bulletin of Forestry Science

  • Csóka, Gy., Hirka, A. & Szőcs, L. (2012): Insect globalization in the Hungarian forests. Bulletin of Forestry Science, 2(1): 187-198.
  • Csepelényi, M., Hirka, A., Szénási, Á., Mikó, Á., Szőcs, L. & Csóka, Gy. (2017): Rapid area expansion and mass occurrences of the invasive oak lace bug [Corythucha arcuata (Say 1932)] in Hungary. Bulletin of Forestry Science, 7(2): 127-134.
  • Csóka, Gy., Hirka, A., Csepelényi, M., Szőcs, L., Molnár, M., Tuba, K., Hillebrand, R. & Lakatos, F. (2018): Response of forest insects to the climate change (case studies). Bulletin of Forestry Science, 8(1): 149-162.
  • Korda, M., Ripka, G., Hirka, A. & Csóka, Gy. (2022): Rapid spread and presently known distribution of Aceria fraxiniflora (Felt) (Acari: Eriophyoidea) in Hungary. Bulletin of Forestry Science, 12(2): 121-128.
  • Eötvös, Cs. B., Hirka, A., Gimesi, L., Lövei, G., Gáspár, Cs. & Csóka, Gy. (2023): Estimation of spring caterpillar biomass in hungarian deciduous forests from long-term light trap data – what will the insectivorous bird nestlings eat?. Bulletin of Forestry Science, 13(1): 5-20.
  • Eötvös, Cs. B., Tóth, M., Hirka, A., Fürjes-Mikó, Á., Gáspár, Cs., Paulin, M., Lakatos, F. & Csóka, Gy. (2023): Factors influencing the short-distance spread of oak lace bug [Corythucha arcuata Say, 1832)] in hungarian oak forests. Bulletin of Forestry Science, 13(2): 131-144.
  • Manninger, M., Edelényi, M., Pödör, Z. & Jereb, L. (2011): Overview of the applied methods in the research of the impact of environmental factors on tree growth. Bulletin of Forestry Science, 1(1): 59-70.
  • Manninger, M. & Pödör, Z. (2014): Characterization of the temperature and precipitation condition of Zala County. Bulletin of Forestry Science, 4(2): 43-54.
  • Führer, E., Csiha, I., Szabados, I., Pödör, Z. & Jagodics, A. (2014): Aboveground and belowground dendromass in a stand of Turkey oak. Bulletin of Forestry Science, 4(2): 109-119.
  • Führer, E., Edelényi, M., Jagodics, A., Jereb, L., Horváth, L., Kern, Z., Móring, A., Szabados, I. & Pödör, Z. (2016): Effect of weather conditions on the annual basal area increment of a beech stand of old age. Bulletin of Forestry Science, 6(1): 61-78.
  • Borovics, A., Illés, G., Juhász, J., Móricz, N., Rasztovits, E., Nimmerfroh-Pletscher, B., Unghváry, F., Pintér, T., Pödör, Z. & Jereb, L. (2018): The necessity and steps of establishing a forestry climate centre. Bulletin of Forestry Science, 8(2): 5-8.
  • Garamszegi, B. & Kern, Z. (2016): Basal area growth trends of Hungarian beech forests in a changing climate. Bulletin of Forestry Science, 6(1): 35-44.
  • Garamszegi, B., Nagy-Khell, M., Farkas, M. & Nagy, L. (2018): Impact of weather conditions on the interannual growth characteristics of alder and oak stands with improved groundwater-management. Bulletin of Forestry Science, 8(2): 9-16.
  • Szőcs, L., Melika, G. & Csóka, Gy. (2013): Data on the parasitoid complexes of leaf mining insects on oaks. Bulletin of Forestry Science, 3(1): 251-259.
  • Fürjes-Mikó, Á., Csősz, S. & Csóka, Gy. (2019): Role of red wood ants (Formica rufa group) in forest protection in europe – a literature review. Bulletin of Forestry Science, 9(1): 35-50.
  • * Automatically generated recommendations based on the occurrence of keywords given by authors in the titles and abstracts of other articles. For more detailed search please use the manual search.