Bulletin of Forestry Science / Volume 8 / Issue 1 / Pages 211-226
previous article | next article

Climate-change induced forest decline can further enhance climate change

Zoltán Somogyi

Correspondence

Correspondence: Somogyi Zoltán

Postal address: H-1027 Budapest, Frankel Leó u. 1.

e-mail: somogyiz[at]erti.hu

Abstract

Changes in the forest carbon cycle are among the projected risks of climate change. In this study, these changes were estimated for three important Hungarian tree species for two regional climate change scenarios and three wood harvesting scenarios using the carbon accounting model CASMOFOR. The effects of changing local climate type on species composition and tree growth were studied under ceteris paribus conditions using appropriate site-related forest inventory information. The effect of projected droughts on mortality was modelled using empirical results of a previous study, while conservative assumptions were applied for the effect of climate change on several less important model parameters. Results demonstrate dramatically increasing mortality, considerably changing species composition and significant drop of tree growth as the risk of drought increases. As a combined effect of all these processes, country-level emissions from forests are projected to reach the order of magnitude of the current total economy-wide greenhouse gas emissions by the second half of the century. By providing positive feedback, these emissions can considerably offset mitigation efforts in non-forestry sectors.

Keywords: drought, mortality, tree growth, species composition, carbon cycle, greenhouse gas emissions

  • Berki I., Rasztovics E. & Móricz N. 2014: Erdőállományok egészségi állapotának értékelése – egy új megközelítés. Erdészettudományi Közlemények 4(2): 149–155. full text
  • Berki I., Rasztovics E., Móricz N. & Kolozs L. 2016: The Role of Tree Mortality in Vitality Assessment of Sessile Oak Forests. South-east European forestry 7(2): 91–97. DOI: 10.15177/seefor.16-14
  • Berki I. & Mátyás Cs. 2017: A szárazodás befolyásolta kigyérülés a kocsánytalan tölgy példáján. Kézirat, Sopron.
  • Borhidi A. 1961: Klimadiagramme und klimazonale Karte Ungarns. Annales Universitatis Scientiarum Budapestinensis de Rolando Eötvös Nominatae. Sectio biologica 4: 21–50.
  • Csóka Gy., Koltay A., Hirka A. & Janik G. 2007: Az aszályosság hatása kocsánytalan tölgyeseink és bükköseink egészségi állapotára. In: Mátyás Cs. & Vig P. (eds): Erdő és Klíma V. Nyugat-magyarországi Egyetem, Sopron, 229–239.
  • Csóka Gy., Koltay A., Hirka A. & Janik G. 2009: Az aszályosság hatása kocsánytalan tölgyeseink és bükköseink egészségi állapotára. Klíma-21 füzetek 57: 64–73.
  • Csóka Gy. et al. 2016: Aszály-mortalitás összefüggések. Nem publikált adatok.
  • Ellenberg H. 1986: Vegetation Mitteleuropas mit den Alpen, 4th edn. Fischer, Stuttgart.
  • Franke J. & Köstner B. 2007: Effects of recent climate trends on the distribution of potential natural vegetation in Central Germany. International Journal of Biometeorology 52: 139–147. DOI: 10.1007/s00484-007-0096-5
  • Hirka A. (eds) 2016: A 2015. évi biotikus és abiotikus erdőgazdasági károk, valamint a 2016-ban várható károsítások. NAIK Erdészeti Tudományos Intézet, NÉBIH Erdészeti Igazgatóság, Budapest.
  • IPCC 2013: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Stocker T.F., Qin D., Plattner G.-K., Tignor M., Allen S. K., Boschung J. et al. (eds)]. Cambridge, Cambridge University Press, United Kingdom and New York, NY, USA.
  • Járó Z. 1966: A termőhely. In: Babos I., Proszt H.S., Járó Z., Király L., Szodfridt I. & Tóth B.: Erdészeti termőhelyfeltárás és térképezés. Akadémiai Kiadó, Budapest, 19–116.
  • Mátyás Cs. & Czimber K. 2000: Zonális erdőtakaró és a klímaváltozás hatásainak modellezése: lehetőségek és korlátok mezoklíma szinten. In: Kiricsi A. (ed): Erdő és Klíma III. Debreceni Egyetem, TTK Meteorológiai Tanszék, Debrecen, 83–97.
  • Móricz N., Rasztovics E., Gálos B., Berki I., Eredics A. & Loibl W. 2013: Modelling the Potential Distribution of Three Climate Zonal Tree Species for Present and Future Climate in Hungary. Acta Silvatica et Lignaria Hungarica 9(1): 85–96. DOI: 10.2478/aslh-2013-0007
  • Rasztovics E., Berki I., Mátyás Cs., Czimber K., Pötzelsberger E. & Móricz N. 2014: The incorporation of extreme drought events improves models for beech persistence at its distribution limit. Annals of Forest Science 71(2): 201–210. DOI: 10.1007/s13595-013-0346-0
  • Skovsgaard J.P. & Vanclay J.K. 2008: Forest site productivity: a review of the evolution of dendrometric concepts for even-aged stands. Forestry: An International Journal of Forest Research 81(1): 13–31. DOI: 10.1093/forestry/cpm041
  • Somogyi Z. 2008: Recent trends of tree growth in relation to climate change in Hungary. Acta Silvatica & Lignaria Hungarica 4: 17–27. full text
  • Somogyi Z., 2016: Projected effects of climate change on the carbon stocks of European beech (Fagus sylvatica L.) forests in Zala County, Hungary. Lesnicki casopis - Forestry Journal 62: 3–14. DOI: 10.1515/forj-2016-0001
  • Somogyi Z. 2017: Az elővigyázatosság elve és az éghajlatváltozás - Mire figyelmeztetnek az erdők? Magyar Tudomány 6: 652–657.
  • Zhu Z. et al. 2016: Greening of the Earth and its drivers. Nature Climate Change 6(8): 791–795. DOI: 10.1038/nclimate3004
  • Zimmermann N.E., Schmatz D.R. & Psomas A. 2013: Climate Change Scenarios to 2100 and Implications for Forest Management. In: Fitzgerald J. & Lindner M. (eds) 2013: Adapting to climate change in European forests – Results of the MOTIVE project. Pensoft Publishers, Sofia, 9–14.
  • URL1: Earth System Grid Federation (ESGF) (2018. 08.hó). URL
  • URL2: CARPATCLIM adatbázis. (2018. 08. hó) URL
  • URL3: Carbon Sequestration Model for Forestations (CASMOFOR) (2018. 08. hó). URL
  • URL4: ERTI fatermési táblák. (2018. 08. hó) URL
  • URL5: National Inventory Report, Hungary. (2018. 08. hó) URL
  • Open Acces

    For non-commercial purposes, let others distribute and copy the article, and include in a collective work, as long as they cite the author(s) and the journal, and provided they do not alter or modify the article.

    Cite this article as:

    Somogyi, Z. (2018): Climate-change induced forest decline can further enhance climate change. Bulletin of Forestry Science, 8(1): 211-226. (in Hungarian) DOI: 10.17164/EK.2018.013

    Volume 8, Issue 1
    Pages: 211-226

    DOI: 10.17164/EK.2018.013

    First published:
    31 May 2018

    Related content

    14

    More articles
    by this authors

    1

    Related content in the Bulletin of Forestry Science*

  • Németh, T. M., Szabó, O. & Móricz, N. (2021): Comparative drought sensitivity analysis of young sessile oak and turkey oak trees in Somogy county (Hungary). Bulletin of Forestry Science, 11(1): 27-40.
  • Koltay, A., Fürjes-Mikó, Á., Tenorio-Baigorria, I., Eötvös, Cs. B. & Horváth, L. (2020): Health condition investigation of forests in KASZÓ-LIFE project. Bulletin of Forestry Science, 10(2): 97-108.
  • Kottek, P. & Király, É. (2019): Climate change can be detected in the national forestry database. Bulletin of Forestry Science, 9(1): 7-18.
  • Berki, I., Móricz, N., Rasztovits, E., Gulyás, K., Garamszegi, B., Horváth, A., Balázs, P. & Lakatos, B. (2018): Mortality and accelerating growth in sessile oak sites. Bulletin of Forestry Science, 8(1): 119-130.
  • Illés, G. (2018): Predicting the climate change induced yield potential changes of sessile oak stands. Bulletin of Forestry Science, 8(1): 105-118.
  • Gálos, B. & Führer, E. (2018): Climate projections for forestry in Hungary. Bulletin of Forestry Science, 8(1): 43-55.
  • Hirka, A., Pödör, Z., Garamszegi, B. & Csóka, Gy. (2018): 50 years trends of the forest drought damage in Hungary (1962-2011). Bulletin of Forestry Science, 8(1): 11-25.
  • Gálos, B. & Somogyi, Z. (2017): New climate scenarios – smaller drought risk for European beech?. Bulletin of Forestry Science, 7(2): 85-98.
  • Janik, G., Hirka, A., Koltay, A., Juhász, J. & Csóka, Gy. (2016): 50 years biotic damage in the Hungarian beech forests. Bulletin of Forestry Science, 6(1): 45-60.
  • Mátyás, Cs. & Kramer, K. (2016): Adaptive management of forests and their genetic resources in the face of climate change. Bulletin of Forestry Science, 6(1): 7-16.
  • Berki, I., Rasztovits, E. & Móricz, N. (2014): Health condition assessment of forest stands – a new approach. Bulletin of Forestry Science, 4(2): 149-155.
  • Führer, E., Csiha, I., Szabados, I., Pödör, Z. & Jagodics, A. (2014): Aboveground and belowground dendromass in a stand of Turkey oak. Bulletin of Forestry Science, 4(2): 109-119.
  • Gálos, B., Mátyás, Cs. & Jacob, D. (2012): The role of afforestation in mitigating climate change. Bulletin of Forestry Science, 2(1): 35-45.
  • Führer, E., Marosi, Gy., Jagodics, A. & Juhász, I. (2011): A possible effect of climate change in forest management. Bulletin of Forestry Science, 1(1): 17-28.
  • More articles by this authors in the Bulletin of Forestry Science

    * Automatically generated recommendations based on the occurrence of keywords given by authors in the titles and abstracts of other articles. For more detailed search please use the manual search.