Bulletin of Forestry Science / Volume 8 / Issue 1 / Pages 227-245
previous article | next article

Carbon footprint and predicted climate risk of forest technologies

András Polgár, Judit Pécsinger, Adrienn Horváth, Katalin Mátyás Szakálosné, László Attila Horváth, János Rumpf & Zoltán Kovács

Correspondence

Correspondence: Polgár András

Postal address: H-9400 Sopron, Bajcsy-Zsilinszky u. 4.

e-mail: polgar.andras[at]uni-sopron.hu

Abstract

Forest management is the only economic activity which also permits the prolonged extraction of significant amounts of atmospheric carbon. The purpose of our research is to deteminate the carbon footprint of forest loggings during utilization within the entire life cycle of raw wood products. In addition, the environmental impact assessment of forest logging technologies also can be an important factor in climate change adaption. Shortwood forestry work systems has been assessed by environmental impact assessment using the Life Cycle Analysis (LCA) method. Based on a common functional unit (1 ha), a comparative environmental LCA for intermediate and final cutting was performed in stands of beech, oak, spruce, acacia, hybrid poplar. Based on results, a carbon footprint order (GWP) were calculated for utilization life cycle phases and for the entire tree utilization life cycle. Final cutting had the most significant impact based on the analysis of the absolute carbon footprint (ABF) per hectare (considered fossile and biotic origin together). The distribution of ABF by final cutting showed the following order: hybrid poplar (8%) – beech (9%) – spruce (11%) – acacia (35%) – oak (37%). For the whole technological life cycle, the ranking of ABF was "hybrid poplar (77109,06) - spruce (120868,7) - beech (165050,7) - acacia (354843,2) - oak (439544,1) (GWP 100 years: [kg CO2-Equiv.]). For the carbon footprint of fossil origin, the ranking was „beech (2326,0) – oak (7679,89) – hybrid poplar (9063,94) – spruce (11109,85) – acacia (11206,34) (GWP 100 years: [kg CO2-Equiv.]. Based on the contribution of each climate change process, an ecological risk assessment has been added. With regard to the determination of carbon storage potential, raw wood products can be considered as low-emission raw materials.

Keywords: environmental life cycle assessment, carbon footprint, forestry technologies, climate change impact assessment

  • Ákos L. 1964: Erdészeti, vadászati, faipari lexikon. Mezőgazdasági Kiadó, Budapest.
  • Ayres R.U. & Kneese A.V. 1969: Production, consumption and externalities. The American Economic Review 59(3): 282–297.
  • Berg S. 1995: The Environmental Loads of Fossil Fuels in Swedesh Forestry – an Inventory for a LCA. In: Frühwald A. & Solberg B. (eds): Life-Cycle Analysis – a Challange for Forestry and Forest Industry, EFI Proceedings 8, European Forest Institute, 57–68.
  • CML 2001: Guinée J.B., Gorrée M., Heijungs R., Huppes G., Kleijn R., Koning A. et al. 2002: Handbook on life cycle assessment. Operational guide to the ISO standards. I: LCA in perspective. IIa: Guide. IIb: Operational annex. III: Scientific background. Kluwer Academic Publishers, Dordrecht.
  • Czimber K. & Gálos B. 2016: A new decision support system to analyse the impacts of climate change on the Hungarian forestry and agricultural sectors. Scandinavian Journal of Forest Research 34(7): 664–673. DOI: 10.1080/02827581.2016.1212088
  • Erkman S. 1997: Industrial ecology: an historical view. Journal of Cleaner production 5(1-2): 1–10. DOI: 10.1016/s0959-6526(97)00003-6
  • Frieden D., Pena N. & Bird D.N. 2012: Incentives for the use of forest biomass: A comparative analysis of Kyoto Protocol accounting pre- and post- 2012. Smart Forests 4: 84–92. DOI: 10.1080/20430779.2012.723513
  • Frühwald A. 1995: LCA – a Challange for Forestry and Forest Product Industry. In: Frühwald, A. & Solberg B. (eds): Life-Cycle Analysis – a Challange for Forestry and Forest Industry, EFI Proceedings 8, European Forest Institute, 10–11.
  • Führer E. & Mátyás Cs. 2005: Erdőgazdálkodás és klímabizonytalanság. AGRO-21 füzetek 41: 124–128.
  • Gálos B., Führer E., Czimber K., Gulyás K., Bidló A., Hänsler A., et al. 2015: Climatic threats determining future adaptive forest management – a case study of Zala County. Időjárás 119(4): 425–441.
  • Guinée J.B., Heijungs R., Huppes G., Zamagni A., Masoni P., Buonamici R., et al. 2010: Life Cycle Assessment: Past, Present and Future. Environmental Science & Technology 45(1): 90–96.
  • Hall C., Lavine M. & Sloane J. 1979: Efficiency of energy delivery systems: I. An economic and energy analysis. Environmental Management 3(6): 493–504. DOI: 10.1007/bf01866318
  • Heinimann H.R. 2012: Life Cycle Assessment (LCA) in Forestry – State and Perspectives. Croatian Journal of Forest Engineering 33(2): 357–372.
  • Heinimann H.R. & Maeda-Inaba S. 2004: Environmental Performance Indicators EPIs for Forest Roads Network Systems. In: Heidin I.D. & Krag R. (eds): 2004 International Mountain Logging Conference. A Joint FERIC, UBC and IUFRO d3 conference, published on CD. Forest Engineering Research Institute of Canada, Vancouver, BC, Canada, 1–13.
  • Horváth A., Bene Zs. & Bidló A. 2017: Talaj szerves szénkészletének felmérése néhány cser-, kocsánytalan tölgyes és bükkös állományban. In: BidIó A. & Facskó F. (eds): Soproni Egyetem Erdőmérnöki Kar V. Kari Tudományos Konferencia. Soproni Egyetem Kiadó, Sopron, 16–20.
  • Kim S., Han S.H., Lee J., Kim C., Lee S-T. & Son Y. 2016: Impact of thinning on carbon storage of dead organic matter across larch and oak stands in South Korea. iForest Biogeosciences and Forestry 9: 593–598. DOI: 10.3832/ifor1776-008
  • Klein D., Wolf C., Schulz C. & Weber-Blaschke G. 2015: 20 years of life cycle assessment (LCA) in the forestry sector: state of the art and a methodical proposal for the LCA of forest production. The International Journal of Life Cycle Assessment 20(4): 556–575. DOI: 10.1007/s11367-015-0847-1
  • Mátyás Cs. 2006: Erdők a globális és hazai szénforgalomban. In: Szulcsán G. (ed): Alföldi Erdőkért Egyesület, Szeged, 5–13.
  • Móricz N., Rasztovits E., Gálos B., Berki I., Eredics A. & Loibl W. 2013: Modeling the Potential Distribution of Three Climate Zonal Tree Species for Present and Future Climate in Hungary. Acta Silvatica et Lignaria Hungarica 9: 85–96. DOI: 10.2478/aslh-2013-0007
  • ISO (2006a). ISO 14040:2006. Environmental management. Life cycle assessment. Principles and framework (ISO 14040:2006), International Organization for Standardization, Geneva, Switzerland.
  • ISO (2006b). ISO 14044:2006. Environmental management. Life cycle assessment. Requirements and guidelines (ISO 14044:2006), International Organization for Standardization, Geneva, Switzerland.
  • Nakicenovic N. & Swart R. 2000: Special Report on Emissions Scenarios: A Special Report of Working Group III of the Intergovernmental Panel on Climate Change. Cambridge University Press, New York, NY, USA.
  • Odum H.T., Kemp W., Sell M., Boynton W. & Lehman M. 1977: Energy analysis and the coupling of man and estuaries. Environmental Management 1(4): 297–315.
  • Pájer J. 1998: Környezeti hatásvizsgálatok. Nyugat-magyarországi Egyetem, Sopron.
  • Polgár A. 2012: Környezeti hatásértékelés a környezetirányítási rendszerekben. Doktori disszertáció, Nyugat-magyarországi Egyetem, Sopron.
  • Rumpf J., Horváth A.L., Major T. & Szakálosné Mátyás K. 2016: Erdőhasználat. Mezőgazda Kiadó, Budapest.
  • Sandin G., Peters G.M. & Svanström M. 2016: Life Cycle Assessment of Forest Products: Challenges and Solutions. Life Cycle Assessment of Forest Products. In: Life Cycle Assessment of Forest Products. SpringerBriefs in Molecular Science. Springer, Cham, 25–67. DOI: 10.1007/978-3-319-44027-9_4
  • Simon B. 2012: A rendszerhatárok és a hatásvizsgálati módszer megválasztásának szerepe az LCA eredményében – az elektromos-energia előállítás példáján keresztül. Eco-matrix 2012(1-2): 11–24.
  • Sundberg U. 1982: A study on cost of machine use in forestry – Proposing fuel consumption as cost determinant. The Swedesh University of Agricultural Sciences. Department of Operational Efficiency. Report No. 142.
  • Sundberg U. & Svanqvist N. 1987: Fuel consumption as indicator of the economics os mechanization. Scandinavian Journal of Forest Research 2(1-4): 389–398. DOI: 10.1080/02827588709382477
  • Tellnes L.G.F., Ganne-Chedeville C., Dias A., Dolezal F., Hill C. & Zea Escamilla E. 2017: Comparative assessment for biogenic carbon accounting methods in carbon footprint of products: a review study for construction materials based on forest products. iForest Biogeosciences and Forestry 10: 815–823. DOI: 10.3832/ifor2386-010
  • Thoroe C. & Schweinle J. 1995: Life Cycle Analysis in Forestry. In Frühwald A., Solberg B. (eds): Life-Cycle Analysis – a Challange for Forestry and Forest Industry. EFI Proceedings 8, European Forest Institute, 15–16.
  • USEPA 1998: Guidelines for Ecological Risk Assessment U.S. Environmental Protecion Agency. Risk Assessment Forum, Washington D.C. 2–19.
  • Vadász E. 1924: A szén és petróleum múltja és jövője. Athenaeum Kiadó, Budapest.
  • Buzás Z. 2005: Buzás Zoltán számítása az Sz. közelében lévő Mátrakeresztes erdőtag CO2 lekötésének évi értékére. (letöltve: 2017. december 27.) URL
  • Cseh G. 1999: Az ipari kockázatok értékelésének és hatósági szabályozásának elvei és terminológiája. [Átdolgozott változat: CD Cégbiztonság, 2004. II. n.év, KJK-KERSZÖV Jogi és Üzleti Kiadó, Budapest, 2004.] URL
  • NÉBIH fakitermelési adatközlés 2016: A 288/2009. (XII. 15.) Korm. rendelettel elrendelt 2016. évi Országos Statisztikai Adatgyűjtési Program 1254 számú adatgyűjtése. Beszámoló az erdősítésekről és a fakitermelésekről a 2016. évben (országos összesítő): 15. (letöltve: 2018. május 9.) URL
  • Open Acces

    For non-commercial purposes, let others distribute and copy the article, and include in a collective work, as long as they cite the author(s) and the journal, and provided they do not alter or modify the article.

    Cite this article as:

    Polgár, A., Pécsinger, J., Horváth, A., Szakálosné, M. K., Horváth, A. L., Rumpf, J. & Kovács, Z. (2018): Carbon footprint and predicted climate risk of forest technologies. Bulletin of Forestry Science, 8(1): 227-245. (in Hungarian) DOI: 10.17164/EK.2018.014

    Volume 8, Issue 1
    Pages: 227-245

    DOI: 10.17164/EK.2018.014

    First published:
    1 June 2018

    Related content

    3

    More articles
    by this authors

    4

    Related content in the Bulletin of Forestry Science*

    More articles by this authors in the Bulletin of Forestry Science

    * Automatically generated recommendations based on the occurrence of keywords given by authors in the titles and abstracts of other articles. For more detailed search please use the manual search.