Bulletin of Forestry Science / Volume 14 / Issue 1 / Pages 9-10
previous article | next article

Mitigating climate change through wood industry measures in Hungary

Éva Király, Gábor Kis-Kovács, Zoltán Börcsök, Zoltán Kocsis, Péter Kottek, Tamás Mertl, Gábor Németh, András Polgár & Attila Borovics

Correspondence

Correspondence: Király Éva

Postal address: 9600 Sárvár, Várkerület 30/A.

e-mail: kiraly.eva.ilona[at]uni-sopron.hu

Abstract

Harvested wood products (HWPs) hold a significant amount of carbon, with long-lasting products and wooden buildings being some of the most effective methods for carbon storage. Extending the lifespan of wood products, along with proper waste management, recycling, and reuse, can further help meet climate goals. In our study, we projected the carbon storage, carbon dioxide, and methane emissions of the Hungarian HWP pool up to 2050 under 10 different scenarios to identify the combination of wood industry measures with the greatest impact on climate change mitigation. We utilized the country-specific HWP-RIAL model to forecast emissions related to the end-of-life and waste management of wood products. Our main finding is that without additional measures, the Hungarian HWP pool would turn from a carbon sink to a source of emissions by 2047. To ensure the Hungarian HWP pool remains a carbon sink, it is crucial to implement further climate mitigation strategies, including cascading product value chains and circular bioeconomy approaches. The most effective individual measures include increasing product half-life, boosting the recycling rate, and enhancing industrial wood production through increased assortments and harvesting. By combining these measures, an average annual climate change mitigation potential of up to 1.5 Mt CO2 equivalents could be achieved during the 20222050 period.
This article is based on the original publication by Király et al. 2024 (Climate change mitigation potentials of wood industry related measures in Hungary).

Keywords: CO2, HWP, climate change mitigation, carbon storage, half-life extension, incineration, solid waste disposal

  • Auer V. & Rauch P. 2020: Assessing hardwood flows from resource to production through Material Flow Analysis. 9th Hardwood Proceedings, Vol 9 - pt I: An Underutilized Resource: Hardwood Oriented Research. Nemeth, R.; Rademacher, P.; Hansmann, C.; Bak, M.; Bader, M. eds. 13-20.
  • Boonstra M. 2008: A two-stage thermal modification of wood. Ph.D. Thesis in Applied Biological Sciences: Soil and Forest management. Henry Poincaré University-Nancy, France.
  • Borovics A. 2022: ErdőLab: a Soproni Egyetem erdészeti és faipari projektje: Fókuszban az éghajlatváltozás mérséklése. Erdészeti Lapok 157: 114–115. full text
  • Borovics A., Mertl T., Király É. & Kottek P. 2023: Estimation of the overmature wood stock and the projection of the maximum wood mobilization potential up to 2100 in Hungary. Forests 14(8): 1516. DOI: 10.3390/f14081516
  • Börcsök Z., Németh G. & Kocsis Z. 2023: Expert judgement ont he future assortment composition of harvested wood in Hungary. University of Sopron. Kézirat.
  • Brunet-Navarro P., Jochheim H., Cardellini G., Richter K. & Muys B. 2021: Climate mitigation by energy and material substitution of wood products has an expiry date, Journal of Cleaner Production 303: 127026, DOI: 10.1016/j.jclepro.2021.127026
  • Brunet-Navarro P., Jochheim H., Kroiher F. & Muys B. 2018: Effect of cascade use on the carbon balance of the German and European wood sectors. Journal of Cleaner Production 170: 137–146. DOI: 10.1016/j.jclepro.2017.09.135
  • Budzinski M., Bezama A. & Thrän D. 2020: Estimating the potentials for reducing the impacts on climate change by increasing the cascade use and extending the lifetime of wood products in Germany. Resources Conservation & Recycling 10(6): 100034. DOI: 10.1016/j.rcrx.2020.100034
  • Cetera P., Todaro L., Lovaglio T., Moretti N. & Rita A. 2016: Steaming treatment decreases MOE and compression strength of Turkey oak wood. Wood Research 61(2): 255-264. ISSN: 13364561
  • Churkina G., Organschi A., Reyer C.P.O., Ruff A., Vinke K., Liu Z., Reck B.K., Graedel T.E. & Schellnhuber H.J. 2020: Buildings as a global carbon sink. Nature Sustainability 3: 269-276, DOI: 10.1038/s41893-019-0462-4
  • CRF 2023: Common Reporting Format Tables of Hungary as submitted to the UNFCCC. https://unfccc.int/documents/627846
  • Djomo S.N., El Kasmioui O. & Ceulemans R. 2011: Energy and greenhouse gas balance of bioenergy production from poplar and willow: a review. Global Change Biology Bioenergy 3: 181–197. DOI: 10.1111/j.1757-1707.2010.01073.x
  • EC 2020: European Commission. A New Circular Economic Plan for a Cleaner and More Competitive Europe, Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions; COM (2020) 98 final; European Commission: Brussels.
  • Esteves M.B. & Pereira H.M. 2009: Wood modification by heat treatment: a review. Bioresource Technology 4(1): 370–404. DOI: 10.15376/biores.4.1.370-404
  • Fortin M., Ningre F., Robert N. & Mothe F. 2012: Quantifying the impact of forest management on the carbon balance of the forest-wood product chain: A case study applied to even-aged oak stands in France. Forest Ecology and Management 279: 176–188. DOI: 10.1016/j.foreco.2012.05.031
  • Illés G. & Móricz N. 2022a: Climate envelope analyses suggests significant rearrangements in the distribution ranges of Central European tree species. Annals of Forest Science 79(1): 35 DOI: 10.1186/s13595-022-01154-8
  • Illés G. & Móricz N. 2022b: Hazai fafajok klímaanalóg területeinek vizsgálata a klímaváltozás tükrében. Erdészettudományi Közlemények 12(2): 91-112. DOI: 10.17164/EK.2022.06
  • IPCC 2006: 2006 IPCC Guidelines for National Greenhouse Gas Inventories, Prepared by the National Greenhouse Gas Inventories Programme; Eggleston, H.S., Buendia, L., Miwa, K., Ngara, T., Tanabe, K., Eds.; IGES: Kanagawa.
  • IPCC 2019: 2019 Refinement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories; Calvo Buendia, E., Tanabe, K., Kranjc, A., Baasansuren, J., Fukuda, M., Ngarize, S., Osako, A., Pyrozhenko, Y., Shermanau, P., Federici, S., Eds.; IPCC: Geneva.
  • IPCC 2022: Sixth Assessment Report, Climate Change 2022: Mitigation of Climate Change, the Working Group III Contribution. Chapter 7 Agriculture, Forestry, and Other Land Uses (AFOLU); IPCC: Geneva.
  • Johnston C.M.T. & Radeloff V.C. 2019: Global mitigation potential of carbon stored in harvested wood products. Proceedings of the National Academy of Sciences of the United States of America 116: 14526–14531. DOI: 10.1073/pnas.1904231116
  • Király É., Börcsök Z., Kocsis Z., Németh G., Polgár A. & Borovics A. 2022: Carbon Sequestration in Harvested Wood Products in Hungary an Estimation Based on the IPCC 2019 Refinement. Forests 13(11): 1809. DOI: 10.3390/f13111809
  • Király É., Börcsök Z., Kocsis Z., Németh G., Polgár A. & Borovics A. 2024: Climate change mitigation through carbon storage and product substitution in the Hungarian wood industry. Wood Research 69(1): 72-86 DOI: 10.37763/wr.1336-4561/69.1.7286
  • Király É., Forsell N., Schulte M., Kis-Kovács G., Börcsök Z., Kocsis Z., Kottek P., Mertl T., Németh G., Polgár A. & Borovics A. 2024: Climate change mitigation potentials of wood industry related measures in Hungary. Mitigation and Adaptation Strategies for Global Change 29: 62. DOI: 10.1007/s11027-024-10161-1
  • Király É., Kis-Kovács G., Börcsök Z., Kocsis Z., Németh G., Polgár A. & Borovics A. 2023: Modelling Carbon Storage Dynamics of Wood Products with the HWP-RIAL Model—Projection of Particleboard End-of-Life Emissions under Different Climate Mitigation Measures. Sustainability 15(7):6322. DOI: 10.3390/su15076322
  • Kottek P. 2017: National Forest Projection–2050; University of Sopron, Faculty of Forestry, VI. Faculty Scientific Conference Book of Abstracts; Bidló, A., Facskó, F., Eds.; Publishing Office of the University of Sopron: Sopron, Hungary, 59 p.
  • Kottek P., Király É., Mertl T. & Borovics A. 2023a: Trends of Forest Harvesting Ages by Ownership and Function and the Effects of the Recent Changes of the Forest Law in Hungary. Forests 14(4):679. DOI: 10.3390/f14040679
  • Kottek P., Király É., Mertl T. & Borovics A. 2023b: The re-parametrisation of the DAS model based on 2016-2021 data of the National Forestry Database: new results on cutting age distributions. Acta Silvatica et Lignaria Hungarica 19(2): 61–74. DOI: 10.37045/aslh-2023-0005 URL
  • Krankina O.N., Harmon M.E., Schnekenburger F. & Sierra C.A. 2012: Carbon balance on federal forest lands of Western Oregon and Washington: The impact of the Northwest forest plan. Forest Ecology and Management 286: 171–182. DOI: 10.1016/j.foreco.2012.08.028
  • Lakatos F. 1999: Bark beetles on pine in Hungary. In: Foster B., Knizek M. and Grodzki W. (Eds.): Methodology of Forest Insect and Disease Survey in Central Europe: 248-249.
  • Leskinen P., Cardellini G., González-García S., Hurmekoski E., Sathre R., Seppälä J. et al. 2018: Substitution effects of wood-based products in climate change mitigation. From Science to Policy 7. European Forest Institute. DOI: 10.36333/fs07
  • Li L., Wei X.Y., Zhao J. H., Hayes D., Daigneault A., Weiskittel A., Kizha A. R. & ‚Neill S.R.O. 2022: Technological advancement expands carbon storage in harvested wood products in Maine, USA. Biomass and Bioenergy 161: 106457. DOI: 10.1016/j.biombioe.2022.106457
  • Mátyás Cs., Berki I., Bidló A., Csóka GY., Czimber K., Führer E., Gálos B., Gribovszki Z., Illés G., Hirka A. & Somogyi Z. 2018: Sustainability of Forest Cover under Climate Change on the Temperate-Continental Xeric Limits. Forests 9: 489. DOI: 10.3390/f9080489
  • Mátyás Cs., Berki I., Czúcz B., Gálos B., Móricz N. & Rasztovits E. 2010: Future of Beech in Southeast Europe from the Perspective of Evolutionary Ecology. Acta Silvatica et Lignaria Hungarica 91-110. ISSN 1786-691X DOI: 10.37045/aslh-2010-0007 URL
  • NFK 2023: Summary Data on Forests in Hungary; National Land Centre, Forestry Department. https://nfk.gov.hu/Magyarorszag_erdeivel_kapcsolatos_adatok_news_513
  • NIR 2023: National Inventory Report for 1985–2021. Hungary. Chapter: Land-Use, Land-Use Change and Forestry; Somogyi, Z., Tobisch, T., Király É., Hungarian Meteorological Service: Budapest.
  • OKIR 2023: National Environmental Information System. http://web.okir.hu/en/
  • Országos Hulladékgazdálkodási Terv 2021: Országos Hulladékgazdálkodási Terv 2021–2027. Innovációs és Technológiai Minisztérium. https://kormany.hu/dokumentumtar/orszagos-hulladekgazdalkodasi-terv-2021-2027
  • Sanchez Lopez J., Grassi G., Vizzarri M., Fiorese G., Pilli R., Jonsson R. et al. 2021: Brief on the role of the forestbased bioeconomy in mitigating climate change through carbon storage and material substitution, Sanchez Lopez, J., Jasinevičius, G. and Avraamides, M. editor(s), European Commission, JRC124374
  • Sartori F., Lal R., Ebinger M.H. & Parrish D.J. 2006: Potential soil carbon sequestration and CO2 offset by dedicated energy crops in the USA. Critical Reviews in Plant Sciences 25: 441–472. DOI: 10.1080/07352680600961021
  • Schelhaas M.J., Esch P.W., Groen T.A., Jong B.H.J., Kanninen M., Liski J. et al. 2004: CO2FIX V 3.1 – A modelling framework for quantifying carbon sequestration in forest ecosystems. ALTERRA Rapport No.1068. Wageningen, Netherlands, ALTERRA. 122 p. ISBN: 1566-7197.
  • Searchinger T., Heimlich R. & Houghton R.A. 2008: Use of US croplands for biofuels increases greenhouse gases through emissions from land-use change. Science 319: 1238–1240. DOI: 10.1126/science.1151861
  • Sikkema R., Styles D., Jonsson R., Tobin B. & Byrne K.A. 2023: A market inventory of construction wood for residential building in Europe—In the light of the Green Deal and new circular economy ambitions. Sustainable Cities and Society 90: 104–370. DOI: 10.1016/j.scs.2022.104370
  • Todaro L. 2012: Effect of steaming treatment on resistance to footprints in Turkey oak wood for flooring. European Journal of Wood and Wood Products 70(1-3): 209-214. DOI: 10.1007/s00107-011-0542-2
  • Todaro L., Dichicco P., Moretti N. & D’Auria M. 2013: Effect of combined steam and heat treatments on extractives and lignin in sapwood and heartwood of Turkey oak (Quercus cerris L.) wood. BioResources 8(2): 1718-1730. DOI: 10.15376/biores.8.2.1718-1730
  • Todaro L., Zanuttini R., Scopa A. & Moretti N. 2012: Influence of combined hydrothermal treatments on selected properties of Turkey oak (Quercus cerris L.) wood. Wood Science and Technology 46(1): 563-578. DOI: 10.1007/s00226-011-0430-2
  • Ujvári-Jármay É., Nagy L. & Mátyás Cs. 2016: The IUFRO 1964/68 inventory provenance trial of Norway spruce in Nyírjes, Hungary—results and conclusions of five decades. Acta Silvatica et Lignaria Hungarica 12: 178. DOI: 10.1515/aslh-2016-0001 URL
  • Verkerk P.J., Delacote P., Hurmekoski E., Kunttu J., Matthews R., Mäkipää R. et al. 2022: Forest-Based Climate Change Mitigation and Adaptation in Europe. From Science to Policy 14. European Forest Institute: Joensuu, Finland, ISBN 978-952-7426-22-7. DOI: 10.36333/fs14
  • Wilson J. 2010: Life-cycle inventory of particleboard in terms of resources, emissions, energy and carbon. Wood and Fiber Science 42 (CORRIM Special Issue): 90–106.
  • Open Acces

    For non-commercial purposes, let others distribute and copy the article, and include in a collective work, as long as they cite the author(s) and the journal, and provided they do not alter or modify the article.

    Cite this article as:

    Király, É., Kis-Kovács, G., Börcsök, Z., Kocsis, Z., Kottek, P., Mertl, T., Németh, G., Polgár, A. & Borovics, A. (2024): Mitigating climate change through wood industry measures in Hungary. Bulletin of Forestry Science, 14(1): 9-10. (in Hungarian) DOI: 10.17164/EK.2024.05

    Volume 14, Issue 1
    Pages: 9-10

    DOI: 10.17164/EK.2024.05

    First published:
    17 September 2024

    Related content

    2

    More articles
    by this authors

    23

    Related content in the Bulletin of Forestry Science*

    More articles by this authors in the Bulletin of Forestry Science

  • Bidló, A., Szűcs, P., Horváth, A., Király, É., Németh, E. & Somogyi, Z. (2014): The effect of afforestations on the carbon stock of soil in Transdanubian Region (Hungary). Bulletin of Forestry Science, 4(2): 121-133.
  • Kottek, P. & Király, É. (2019): Climate change can be detected in the national forestry database. Bulletin of Forestry Science, 9(1): 7-18.
  • Kocsis, Z., Németh, G., Börcsök, Z., Polgár, A., Király, É., Kóczán, Zs. & Borovics, A. (2022): Specifying logistics and energy consumption conversion factors related to the carbon footprint analysis of the wood industry processes. Bulletin of Forestry Science, 12(1): 57-73.
  • Folcz, Á., Börcsök, Z., Dima, B. & Frank, N. (2013): Macrofungi (Basidiomycota) investigations in the Sopron Hills (Western Hungary) from forestry point of view. Bulletin of Forestry Science, 3(1): 179-194.
  • Börcsök, Z., Adamik, P. & Pásztory, Z. (2019): Review of the possibilities of bark utilization. Bulletin of Forestry Science, 9(2): 113-138.
  • Börcsök, Z. & Pásztory, Z. (2020): Changes in the heat conducting properties of wood materials as a result of thermal treatment. Bulletin of Forestry Science, 10(1): 17-27.
  • Börcsök, Z. & Pásztory, Z. (2020): Improving the properties of bark based insulation panels. Bulletin of Forestry Science, 10(1): 29-39.
  • Bordács, S., Nagy, L., Pintér, B., Bach, I., Borovics, A., Kottek, P., Szepesi, A., Fekete, Z., Wisnovszky, K. & Mátyás, Cs. (2013): State of Hungary’s forest genetic resources, 2010-2011. Bulletin of Forestry Science, 3(1): 21-37.
  • Rozovits, F. P., Magyar, Zs., Kottek, P. & Bordács, S. (2019): Modeling pollen capacity of forest areas based on tree species and pollen data. Bulletin of Forestry Science, 9(1): 19-33.
  • Mertl, T. & Schiberna, E. (2017): Property structure of private forests in Hungary. Bulletin of Forestry Science, 7(1): 7-23.
  • Mertl, T. & Schiberna, E. (2018): Private forest ownwers in Hungary. Bulletin of Forestry Science, 8(2): 113-126.
  • Fodor, F. & Mertl, T. (2023): The current state and potential of the common hornbeam (Carpinus betulus L.) in forestry and in wood industry. Bulletin of Forestry Science, 13(1): 35-53.
  • Polgár, A., Pécsinger, J., Horváth, A., Szakálosné, M. K., Horváth, A. L., Rumpf, J. & Kovács, Z. (2018): Carbon footprint and predicted climate risk of forest technologies. Bulletin of Forestry Science, 8(1): 227-245.
  • Fábián, A., Lakatos, F., Elekné, F. V., Őrsi, Á., Náhlik, A. & Polgár, A. (2024): Applied sustanibility modell of the University of Sopron. Bulletin of Forestry Science, 14(1): 5-6.
  • Benke, A., Cseke, K. & Borovics, A. (2011): Population genetic inventory of transdanubian Leuce poplars applying RAPD and cpDNA markers. Bulletin of Forestry Science, 1(1): 83-93.
  • Cseke, K., Bordács, S. & Borovics, A. (2011): Taxonomic and genetic study of a mixed oak stand. Bulletin of Forestry Science, 1(1): 95-105.
  • Cseke, K., Benke, A. & Borovics, A. (2011): Identification of poplar genotypes based on DNA fingerprinting method. Bulletin of Forestry Science, 1(1): 107-114.
  • Cseke, K., Jobb, Sz., Koltay, A. & Borovics, A. (2014): The genetic pattern of oak decline. Bulletin of Forestry Science, 4(2): 135-147.
  • Mátyás, Cs. & Borovics, A. (2014): "Agrárklíma". Bulletin of Forestry Science, 4(2): 7-8.
  • Borovics, A., Illés, G., Juhász, J., Móricz, N., Rasztovits, E., Nimmerfroh-Pletscher, B., Unghváry, F., Pintér, T., Pödör, Z. & Jereb, L. (2018): The necessity and steps of establishing a forestry climate centre. Bulletin of Forestry Science, 8(2): 5-8.
  • Cseke, K., Köbölkuti, Z. A., Benke, A., Rumi, A., Báder, M., Borovics, A. & Németh, R. (2020): Allelic variation in candidate genes associated with wood properties of cultivated poplars. Bulletin of Forestry Science, 10(1): 5-16.
  • Kollár, T. & Borovics, A. (2021): The updated methodological directives of data processing and maintainance of the hungarian long term forestry experimental network, and its most important results. Bulletin of Forestry Science, 11(2): 95-114.
  • Benke, A., Köbölkuti, Z. A., Cseke, K., Borovics, A. & Tóth, E. Gy. (2022): Identification of SNP markers responsible for drought tolerance in sessile oak populations: results of basic research for sustainable oak management. Bulletin of Forestry Science, 12(2): 77-90.
  • * Automatically generated recommendations based on the occurrence of keywords given by authors in the titles and abstracts of other articles. For more detailed search please use the manual search.