Bulletin of Forestry Science / Volume 9 / Issue 2 / Pages 113-138
previous article | next article

Review of the possibilities of bark utilization

Zoltán Börcsök, Péter Adamik & Zoltán Pásztory

Correspondence

Correspondence: Börcsök Zoltán

Postal address: H-9400 Sopron, Bajcsy-Zsilinszky u. 4.

e-mail: borcsok.zoltan[at]uni-sopron.hu

Abstract

Approximately 300-400 million cubic meters of bark are produced each year during wood processing. Most of this, however, remains unused or burned. The structure and composition of the bark are special, and differs from the wood, which features a number of utilization possibilities. Agriculture, power engineering, medicine, woodpanel industry, insulation and chemical industry can successfully use and utilise the bark of different trees. This study provides an overview of the structure, properties, and utilization potential of the bark.

Keywords: bark, utilization, anatomy, composition

  • Åberga G., Abrahamsen G., Steinnes E. & Hjelmseth H. 2004: Utilization of barkpockets as time capsules of atmospheric-lead pollution in Norway. Atmospheric Environment 38: 6231–6237. DOI: 10.1016/j.atmosenv.2004.06.041
  • Abyshev A.Z., Agaev É.M. & Guseinov A.B. 2007: Studies of the chemical composition of Birch bark extracts (Cortex betula) from the Betulaceae family. Pharmaceutical Chemistry Journal 41(8): 419–423. DOI: 10.1007/s11094-007-0091-5
  • Anderson A.B., Wong A. & King T.W. 1975: Douglas-Fir and Western Hemlock Bark Extracts as Bonding Agents for Particleboard. Forest Products Journal 25(3): 45–48.
  • Anderson A.B., Wong A. & Wu K.-T. 1974a: Utilization of white fir bark in particleboard. Forest Products Journal 24(1): 51–54.
  • Anderson A.B., Wong A. & Wu K.-T. 1974b: Utilization of white fir bark and its extract in particleboard. Forest Products Journal 24(7): 40–45.
  • Anderson A.B., Wong A. & Wu K.-T. 1974c: Utilization of Ponderosa pine bark and its extract in particleboard. Forest Products Journal 24(8): 48–53.
  • Andres Y., Dumont E., Le Cloirec P. & Ramirez-Lopez E. 2006: Wood bark as packing material in a biofilter used for air treatment. Environment Technology 27(12): 1297–1301. DOI: 10.1080/09593332708618747
  • Annegowda H.V., Gooi T.S., Awang S.H.H., Alias N.A., Mordi M.N., Ramanathan S. et al. 2012: Evaluation of Analgesic and Antioxidant Potency of Various Extracts of Cinnamomum iners Bark. International Journal of Pharmacology 8(3): 198–203. DOI: 10.3923/ijp.2012.198.203
  • Asztalos J. & Szabó P. 1975: A fakéreg hasznosítása Lengyelországban. Faipar 25(12): 363–366.
  • Asztalos J. 1977: A fakéreghasznosítás irányzatai a szocialista országokban. Faipar 27(8): 239–244.
  • Barnes D., Hamadan M.A. & Ottaway J.M. 1976: The lead, copper and zinc content of tree rings and bark. The Science of Total Environment 5: 63–67. DOI: 10.1016/0048-9697(76)90024-3
  • Baroth R. 2005: Literature review of the latest development of wood debarking. Report A No 27, August 2005. University of Oulu, Control Engineering Laboratory.
  • Bauer G., Speck T., Blomer J., Bertling J. & Speck O. 2010: Insulation capability of the bark of trees with different fire adaptation. Journal of Materials Science 45(21): 5950–5959. DOI: 10.1007/s10853-010-4680-4
  • Bellis D.J., McLeod C.W. & Satake K. 2002a: Pb and 206Pb/207Pb isotopic analysis of a tree bark pocket near Sheffield, UK recording historical change in airborne pollution during the 20th Century. The Science of the Total Environment 289: 169–176. DOI: 10.1016/S0048-9697(01)01037-3
  • Bellis D.J., Satake K., Noda M., Nishimura N. & McLeod C.W. 2002b: Evaluation of the historical records of lead pollution in the annual growth rings and bark pockets of a 250-year-old Quercus crispula in Nikko, Japan. The Science of the Total Environment 295: 91–100. DOI: 10.1016/S0048-9697(02)00054-2
  • Berahou A., Auhmani A., Fdil N., Benharref A., Jana M. & Gadhi C.A. 2007: Antibacterial activity of Quercus ilex bark’s extracts. Journal of Ethnopharmacology 112: 426–429. DOI: 10.1016/j.jep.2007.03.032
  • Berlizov A.N., Blum O.B., Filby R.H., Malyuk I.A. & Tryshyn V.V. 2007: Testing applicability of black poplar (Populus nigra L.) bark to heavy metal air pollution monitoring in urban and industrial regions. Science of the Total Environment 372: 693–706. DOI: 10.1016/j.scitotenv.2006.10.029
  • Bittner A. & Schneider A. 1975: Wertvoller Humus aus Rinde. Holz-Zentralblatt 73-74: 956.
  • Blanchet P., Cloutier A. & Riedl B. 2000: Particleboard made from hammer milled black spruce bark residues. Wood Science and Technology 34(1): 11–19. DOI: 10.1007/s002260050003
  • Blossfeld O. 1977: Einsatzmöglichkeiten für Rinden sind geklärt. Informationen für den Industriezweig Schnittholz und Holzwaren 4: 319.
  • Boakye P.A., Brierley S.M., Pasilis S.P. & Balemba O.B. 2012: Garcinia buchananii bark extract is an effective anti-diarrheal remedy for lactose-induced diarrhea. Journal of Ethnopharmacology 142(2): 539–547. DOI: 10.1016/j.jep.2012.05.034
  • Böhm P., Wolterbeek H., Verburg T. & Muśilek L. 1998: The use of tree bark for environmental pollution monitoring in the Czech Republic. Environmental Pollution 102: 243–250. DOI: 10.1016/S0269-7491(98)00082-7
  • Butterfield M. & Peszlen I. 1997: A fatest háromdimenziós szerkezete. Faipari Tudományos Alapítvány, Budapest.
  • Castola V., Bighelli A., Rezzi S., Melloni G., Gladiali S., Desjobert J.-M. et al. 2002: Composition and chemical variability of the triterpene fraction of dichloromethane extracts of cork (Quercus suber L.). Industrial Crops and Products 15: 15–22. DOI: 10.1016/S0926-6690(01)00091-7
  • Castro O., Silva J.M., Devezas T., Silva A. & Gil L. 2010: Cork agglomerates as an ideal core material in lightweight structures. Materials and Design 31: 425–432. DOI: 10.1016/j.matdes.2009.05.039
  • Catry F.X., Rego F., Moreira F., Fernandes P.M. & Pausas J.G. 2010: Post-fire tree mortality in mixed forests of central Portugal. Forest Ecology and Management 260: 1184–1192. DOI: 10.1016/j.foreco.2010.07.010
  • Chang Y.P. & Mitchell R.L. 1955: Chemical composition of common North American pulpwood barks. Tappi 38(5): 315–320.
  • Chen T.Y., Paulitsch M. & Soto G. 1972: On the suitability of the biological surface mass from spruce thinnings as raw material for particleboard. Holz als Roh- und Werkstoffe 30(1): 15–18.
  • Cheng X., Deng J., Zhang S.Y., Riedl B. & Cloutier A. 2006: Impact of bark content on the properties of medium density fiberboard (MDF) in four species grown in eastern Canada. Forest Products 56(3): 64–69.
  • Chow P., Nakayama F.S., Blahnik B., Youngquist J.A. & Coffelt T.A. 2008: Chemical constituents and physical properties of guayule wood and bark. Industrial Crops and Products 28: 303–308. DOI: 10.1016/j.indcrop.2008.03.006
  • Chow S. & Obermajer A. 2004: Wood-to-bark adhesion of subalpine fir (Abies lasiocarpa) in extreme temperatures. Wood Science and Technology 38: 391–403. DOI 10.1007/s00226-004-0247-3
  • Clark A., Phillips D.R. & Frederick D.J. 1985: Weight, Volume, and Physical Properties of Major Hardwood Species in the Gulf and Atlantic Coastal Plains. USDA, Forest Service, Southeastern Forest Experiment Station Research Paper SE-250. DOI: 10.2737/se-rp-250
  • Comandini P., Lerma-García M.J., Simó-Alfonso E.F. & Toschi T.G. 2014: Tannin analysis of chestnut bark samples (Castanea sativa Mill.) by HPLC-DAD-MS. Food Chemistry 157: 290–295. DOI: 10.1016/j.foodchem.2014.02.003
  • Conkova M. & Kubiznakova J. 2008: Lead isotope ratios in tree bark pockets: An indicator of past air pollution in the Czech Republic. Science of the Total Environment 404: 440–445. DOI: 10.1016/j.scitotenv.2008.04.025
  • Coquet C., Ferré E., Peyronel D., Farra C.D. & Farnet A.M. 2008: Identification of new molecules extracted from Quercus suber L. cork. Comptes Rendus Biologies 331: 853–858. DOI: 10.1016/j.crvi.2008.08.011
  • Cordeiro N., Belgacem M.N., Gandini A. & Neto C.P. 1997: Urethanes and polyurethanes from suberin: 1. Kinetic study. Industrial Crops and Products 6: 163–167. DOI: 10.1016/S0926-6690(96)00212-9
  • Cordeiro N., Belgacem M.N., Silvestre A.J.D., Neto C.P. & Gandini A. 1998: Cork suberin as a new source of chemicals. 1. Isolation and chemical characterization of its composition. International Journal of Biological Macromolecules 22: 71–80. DOI: 10.1016/S0141-8130(97)00090-1
  • Corder S.E. 1976: Properties and uses of bark as an energy source. Research paper 31. Oregon State University, School of Forestry, Forest Research Laboratory, Corvallis, Oregon, 97331.
  • Cutillas-Barreiro L., Ansias-Manso L., Fernández-Calvino D., Arias-Estévez M., Nóvoa-Munoz J.C., Fernández-Sanjurjo M.J., et al. 2014: Pine bark as bio-adsorbent for Cd, Cu, Ni, Pb and Zn: Batch-type and stirred flow chamber experiments. Journal of Environmental Management 144: 258–264. DOI: 10.1016/j.jenvman.2014.06.008
  • Dedriea M., Jacquet N., Bombeck P-L., Hébert J. & Richel A. 2015: Oak barks as raw materials for the extraction of polyphenols for the chemical and pharmaceutical sectors: A regional case study. Industrial Crops and Products 70: 316–321. DOI: 10.1016/j.indcrop.2015.03.071
  • Deppe H.J. & Ernst K. 1977: Taschenbuch der Spanplattentechnik. DRW-Verlag, Stuttgart.
  • Dibdiakova J., Gjølsjø S. & Wang L. 2014: Solid biofuels from forest – fuel specification and quality assurance. Inherent properties of Norway spruce biomass in some geographical locations in South Norway. Report from Norwegian forest and landscape institute 08/2014.
  • Dickinson M.B. & Johnson E.A. 2001: Fire effects on trees. In: Johnson E. (ed): Forest Fires: Behavior and Ecological Effects. Chapter 14. Academic Press, 477–525. DOI: 10.1016/b978-012386660-8/50016-7
  • Dickinson M.B. 2002: Heat transfer and vascular cambium necrosis in the boles of trees during surface fires. In: Viegas D.X. (ed): Forest Fire Research & Wildland Fire Safety. Millpress, Rotterdam, 190–191.
  • Diouf P.N., Stevanovic T. & Cloutier A. 2009: Study on chemical composition, antioxidant and anti-inflammatory activities of hot water extract from Picea mariana bark and its proanthocyanidin-rich fractions. Food Chemistry 113: 897–902. DOI: 10.1016/j.foodchem.2008.08.016
  • do Vale A.T. & Elias P.S. 2014: Bark thermal protection level of four tree species and the relationship between bark architecture and heat transfer. Ciência Florestal 24(4): 979–987.
  • Dost W.A. 1971: Redwood bark fiber in particleboard. Forest Products Journal 21(10): 38–43.
  • Dubkin M.Sz. & Daramanján P.M. 1978: Dreveszina i othody jejő pererabotki kak kormovie produkty. Himija dreneszny 1: 3.
  • Einspahr D.W., Van Eperen R.H. & Fiscus M.L. 1984: Morphological and bark strength characteristics important to wood/bark adhesion in hardwoods. Wood and Fiber Science 16(3): 339–348.
  • El-Hasan T., Al-Omari H., Jiries A. & Al-Nasir F. 2002: Cypress tree (Cupressus sempervirens L.) bark as an indicator for heavy metal pollution in the atmosphere of Amman City, Jordan. Environment International 28: 513–519. DOI: 10.1016/s0160-4120(02)00079-x
  • FAO 2015: Forest products 2009-2013. FAO Forestry Series No. 48. FAO Statistics Series No. 204.
  • Fatoki O.S. & Ayodele E.T. 1991: Zinc and copper levels in tree barks as indicators of environmental pollution. Environmental International 17: 455–460. DOI: 10.1016/0160-4120(91)90279-Y
  • Fekete Z. 1951: Erdőbecsléstan. Akadémiai Kiadó, Budapest, 145.
  • Feng S., Cheng S., Yuan Z., Leitch M. & Xu C. 2013: Valorization of bark for chemicals and materials: A review. Renewable and Sustainable Energy Reviews 26: 560–578. DOI: 10.1016/j.rser.2013.06.024
  • Fernandes A., Sousa A., Mateus N., Cabral M. & de Freitas V. 2011: Analysis of phenolic compounds in cork from Quercus suber L. by HPLC–DAD/ESI–MS. Food Chemistry 125: 1398–1405. DOI: 10.1016/j.foodchem.2010.10.016
  • Filbakk T., Jirjis R., Nurmi J. & Høibø O. 2011: The effect of bark content on quality parameters of Scots pine (Pinus sylvestris L.) pellets. Biomass and Bioenergy 35: 3342–3349. DOI: 10.1016/j.biombioe.2010.09.011
  • Fodor F. 2004: Fásult személyi – Az árulkodó fakéreg. Természetbúvár 59(3): 2–5.
  • Fradinho D.M., Neto C.P., Evtuguin D., Jorge F.C., Irle M.A., Gil M.H. et al. 2002: Chemical characterisation of bark and of alkaline bark extracts from maritime pine grown in Portugal. Industrial Crops and Products 16: 23–32. DOI: 10.1016/S0926-6690(02)00004-3
  • Gandini A., Neto C.P. & Silvestre A.J.D. 2006: Suberin: A promising renewable resource for novel macromolecular materials. Progress in Polymer Sciences 31: 878–892. DOI: 10.1016/j.progpolymsci.2006.07.004
  • García D.E., Glasser W.G., Pizzi A., Paczkowski S. & Laborie M.-P. 2015: Hydroxypropyl tannin from Pinus pinaster bark as polyol source in urethane chemistry. European Polymer Journal 67: 152–165. DOI: 10.1016/j.eurpolymj.2015.03.039
  • Gemici M., Gemici Y. & Tan K. 2006: Sulphur content of Red pine (Pinus brutia) needles and bark as indicator of atmospheric pollution in Southwest Turkey. Phytologia Balcanica 12(2): 267–272.
  • Gerencsér K. 2010: Fűrészipari technológia (jegyzet). NymE, Fa- és Papíripari Technológiák Intézet, Sopron.
  • Gertjejansen R. & Haygreen J.G. 1973: Effect of aspen bark from butt and upper logs on the physical properties of wafer-type and flake-type particleboards. Forest Products Journal 23(9): 66–71.
  • Ghosh D. 2006: Bark is the Hallmark. Resonance 11(3): 41–50. DOI: 10.1007/bf02835967
  • Gil L. 1997: Cork powder waste: an overview. Biomass and Bioenergy 13(1-2): 59–61. DOI: 10.1016/S0961-9534(97)00033-0
  • Graça J. & Santos S. 2006: Glycerol-derived ester oligomers from cork suberin. Chemistry and Physics of Lipids 144: 96–107. DOI: 10.1016/j.chemphyslip.2006.08.001
  • Grace O.M., Prendergast H.D.V., Jager A.K. & van Staden J. 2003: Bark medicines used in traditional healthcare in KwaZulu-Natal, South Africa: An inventory. South African Journal of Botany 69(3): 301–363. DOI: 10.1016/S0254-6299(15)30318-5
  • Grodzińska K. 1971: Acidification of tree bark as a measure of air pollution in southern Poland. Bulletin L'Académie Polonaise des Science, Série des Sciences Biologiques 19(3): 189–195.
  • Grodzińska K. 1978: Acidity of tree bark as a bioindicator of forest pollution in southern Poland. Water, Air and Soil Pollution 7: 3–7.
  • Grodzińska K. 1979: Tree-bark – sensitive biotest for environment acidification. Environment International 2(3): 173–176. DOI: 10.1016/0160-4120(79)90075-8
  • Grodzińska K. 1982: Monitoring of air pollutants by mosses and tree bark. In: Steubing L. & Jäger H.-J. (eds): Monitoring of Air Pollutants by Plants – Methods and Problems. Dr W. Junk Publishers, The Hague, 33–42.
  • Guidi W., Piccioni E., Ginanni M. & Bonari E. 2008: Bark content estimation in poplar (Populus deltoides L.) short-rotation coppice in Central Italy. Biomass and Bioenergy 32: 518–524. DOI: 10.1016/j.biombioe.2007.11.012
  • Gupta G.K. 2009: Development of bark-based environmental-friendly composite panels. Master thesis, Faculty of Forestry, University of Toronto.
  • Han L.E., Li B.T. & Lan S.F. 2008: Responses Of The Urban Roadside Trees To Traffic Environment. In: Sorial G.A. & Hong J (eds): Environmental Science & Technology (II). American Science Press, Houston, USA, 63–70.
  • Hargitai L. 2003: Fűrészáru. Szaktudás Kiadó Ház Rt., Budapest.
  • Harkin J.M. & Rowe J.W. 1971: Bark and its possible uses. USDA. Forest Service, Research note, FPL-091, Forest Products Laboratory.
  • Härtel O. 1982: Pollutants accumulation by bark. In: Steubing L. & Jäger H.-J. (eds): Monitoring of Air Pollutants by Plants – Methods and Problems. Dr W. Junk Publishers, The Hague, 137–147.
  • Heebink B.G. 1974: Particleboards from lodgepole pine forest residue. (USDA Forest Service research paper FPL , 221) U.S. Department of Agriculture, Forest Service, Forest Products Laboratory, Madison, Wisconsin.
  • Heinämäki J., Halenius A., Paavo M., Alakurtti S., Pitkänen P., Pirttimaa M., et al. 2015: Suberin fatty acids isolated from outer birch bark improve moisture barrier properties of cellulose ether films intended for tablet coatings. International Journal of Pharmaceutics 489(1-2): 91–99. DOI: 10.1016/j.ijpharm.2015.04.066
  • Hengst G.E. & Dawson J.O. 1993: Bark thermal properties of selected central hardwood species. In: Gillespie A.R., Parker G.R., Pope P.E. & Rink G. (eds): Proceedings, 9th Central hardwood forest conference, 1993 March 8-10, West Lafayette, IN. General Technical Report NC-161. St. Paul, MN: U.S. Dept. of Agriculture, Forest Service, North Central Forest Experiment Station. 55–75.
  • Hernández-Olivares F., Bollati M.R., del Rio M. & Parga-Landa B. 1999: Development of cork-gypsum composites for building applications. Construction and Building Materials 13: 179–186. DOI: 10.1016/S0950-0618(99)00021-5
  • Hoong Y.B., Paridah M.T. Luqman C.A., Koh M.P. & Loh Y.F. 2009: Fortification of sulfited tannin from the bark of Acacia mangium with phenol-formaldehyde for use as plywood adhesive. Industrial Crops and Products 30: 416–421. DOI: 10.1016/j.indcrop.2009.07.012
  • Hoong Y.B., Paridah M.T., Loh Y.F., Jalaluddin H. & Chuah L.A. 2011: A new source of natural adhesive: Acacia mangium bark extracts co-polymerized with phenol-formaldehyde (PF) for bonding Mempisang (Annonaceae spp.) veneers. International Journal of Adhesion and Adhesives 31(3): 164–167. DOI: 10.1016/j.ijadhadh.2010.12.002
  • Jové P., Olivella M.Á. & Cano L. 2011: Study of the variability in chemical composition of bark layers of Quercus suber L. from different production areas. BioResources 6(2): 1806–1815.
  • Jyske T., Laakso T., Latva-Mäenpää H., Tapanila T. & Saranpää P. 2014: Yield of stilbene glucosides from the bark of young and old Norway spruce stems. Biomass and Bioenergy 71: 216–227. DOI: 10.1016/j.biombioe.2014.10.005
  • Kafle G.K., Chen L., Neibling H. & He B.B. 2015: Field evaluation of wood bark-based down-flow biofilters for mitigation of odor, ammonia, and hydrogen sulfide emissions from confined swine nursery barns. Journal of Environmental Management 147: 164–174. DOI: 10.1016/j.jenvman.2014.09.004
  • Kain G., Barbu M-C., Hinterreiter S., Richter K. & Petuschnigg A. 2013a: Using bark as a heat insulation material. BioResources 8(3): 3718–3731. DOI: 10.15376/biores.8.3.3718-3731
  • Kain G., Güttler V., Barbu M.-C., Petutschnigg A., Richter K. & Tondi G. 2014: Density related properties of bark insulation boards bonded with tannin hexamine resin. European Journal of Wood and Wood Products 72: 417–424. DOI: 10.1007/s00107-014-0798-4
  • Kain G., Heinzmann B., Barbu M.C. & Petutschnigg A. 2013b: Softwood bark for modern composites. ProLigno 9(4): 460–468.
  • Kamikawa D., Kuroda K., Inoue M., Kubo S. & Yoshida T. 2009: Evaluation of combustion properties of wood pellets using a cone calorimeter. Journal of Wood Sciences 55: 453–457. DOI: 10.1007/s10086-009-1061-1
  • Kehr E. 1979: Untersuchungen zum Einfluss der Rinde bei der Verarbeitung unentrindeten Holzes in der Deckschicht von Spanplatten. Holztechnologie 1: 32.
  • Kemppainen K., Siika-aho M., Pattathil S., Giovando S. & Kruus S. 2014: Spruce bark as an industrial source of condensed tannins and non-cellulosic sugars. Industrial Crops and Products 52: 158–168. DOI: 10.1016/j.indcrop.2013.10.009
  • Kim Y-G., Lee J-H., Kim S-I., Baek K-H. & Lee J. 2015: Cinnamon bark oil and its components inhibit biofilm formation and toxin production. International Journal of Food Microbiology 195: 30–39. DOI: 10.1016/j.ijfoodmicro.2014.11.028
  • Kiran A.W. & Chandrakant S.M. 2009: Pharmacognostic profiles of bark of Careya arborea Roxb. Journal of Pharmacognosy and Phytotherapy 1(5): 64–66.
  • Kotina E.L., Van Wyk B.-E. & Tilney P.M. 2014: Anatomy of the leaf and bark of Warburgia salutaris (Canellaceae), an important medicinal plant from South Africa. South African Journal of Botany 94: 177–181. DOI: 10.1016/j.sajb.2014.06.008
  • Kuang Y., Zhou G., Wen D. & Liu S. 2006: Acidity and conductivity of Pinus massoniana bark as indicators to atmospheric acid deposition in Guangdong, China. Journal of Environmental Sciences 18(5): 916–920. DOI: 10.1016/S1001-0742(06)60014-4
  • Kuik P. & Wolterbeek H.T. 1994. Factor-analysis of trace-element data from tree-bark samples in the Netherlands. Environmental Monitoring and Assessment 32: 207–226. DOI: 10.1007/bf00546277
  • Labosky P.K. Jr., Holleman A., Dick J.W. & So D.T. 1977: Utilization of bark residues as poultry litter. Forest Products Journal 27(1): 28–32.
  • Lambert M.J. 1981: Inorganic constituents in wood and bark of New South Wales forest tree species. Research Note No. 45. Forestry Commission of New South Wales, Sydney.
  • Lawes M.J., Richards A., Dathe J. & Midgley J.J. 2011: Bark thickness determines fire resistance of selected tree species from fire-prone tropical savanna in north Australia. Plant Ecology 212: 2057–2069. DOI: 10.1007/s11258-011-9954-7
  • Le Normand M., Mélida H., Holmbom B., Michaelsen T.E., Inngjerdingen M., Bulone V., et al. 2014: Hot-water extracts from the inner bark of Norway spruce with immunomodulating activities. Carbohydrate Polymers 101: 699–704. DOI: 10.1016/j.carbpol.2013.09.067
  • Lehmann W.F. & Geimer R.L. 1974: Properties of structural particleboards from Douglas-fir forest residues. Forest Products Journal 24(10): 17–25.
  • Lehtikangas P. 2001: Quality properties of pelletised sawdust, logging residues and bark. Biomass and Bioenergy 20: 351–360. DOI: 10.1016/S0961-9534(00)00092-1
  • Li D., Wang W., Tian F., Liao W. & Bae C.J. 2014: The oldest bark cloth beater in southern China (Dingmo, Bubing basin, Guangxi). Quaternary International 354: 184–189. DOI: 10.1016/j.quaint.2014.06.062
  • Lin H., Zhang Y-W., Bao Y-L., Wu Y., Sun L-G., Yu C-L., et al. 2013: Secondary metabolites from the stem bark of Juglans mandshurica. Biochemical Systematics and Ecology 51: 184–188. DOI: 10.1016/j.bse.2013.08.010
  • Lippo H., Poikolainen J. & Kubin E. 1995: The use of moss, lichen and pine bark in the nationwide monitoring of atmospheric heavy metal deposition in Finland. Water, Air, and Soil Pollution 85: 2241–2246. DOI: 10.1007/BF01186167
  • Liu Z., Zhang X., Cui W., Zhang X., Li N., Chen J., et al. 2007: Evaluation of short-term and subchronic toxicity of magnolia bark extract in rats. Regulatory Toxicology and Pharmacology 49(3): 160–171. DOI: 10.1016/j.yrtph.2007.06.006
  • Liverside R.M. & Murray M.H. 1977: Possible Use of Sawdust in Clay Building Bricks Should Help Many Sawmillers. Australian Forest Industries 2: 48.
  • Lötschert W. 1983: Immissionsanalysen im Raum Frankfurt unter Verwendung pflanzlicher Bioindikatoren. Verh. Ges. Ökol. 11: 277–290.
  • Mandiwana K.L., Resane T., Panichev N. & Ngobeni P. 2006: The application of tree bark as bio-indicator for the assessment of Cr(VI) in air pollution. Journal of Hazardous Materials B 137: 1241–1245. DOI: 10.1016/j.jhazmat.2006.04.015
  • Marmor L. & Randlane T. 2007: Effects of road traffic on bark pH and epiphytic lichens in Tallinn. Folia Cryptogamica Estonica 43: 23–37.
  • Martin R.E. & Crist J.B. 1970: Elements of bark structure and terminology. Wood and Fiber Science 2(3): 269–279.
  • Miles P.D. & Smith W.B. 2009: Specific Gravity and Other Properties of Wood and Bark for 156 Tree Species Found in North America. Res. Note NRS-38. Newtown Square, PA: U.S. Department of Agriculture, Forest Service, Northern Research Station. DOI: 10.2737/NRS-RN-38
  • Millkin D.E. 1955: Determination of bark volumes and fuel properties. Pulp and paper magazine of Canada 56(13): 106–108.
  • Miranda I., Gominho J., Mirra I. & Pereira H. 2012: Chemical characterization of barks from Picea abies and Pinus sylvestris after fractioning into different particle sizes. Industrial Crops and Products 36: 395–400. DOI: 10.1016/j.indcrop.2011.10.035
  • Miranda I., Gominho J., Mirra I. & Pereira H. 2013: Fractioning and chemical characterization of barks of Betula pendula and Eucalyptus globulus. Industrial Crops and Products 41: 299–305. DOI: 10.1016/j.indcrop.2012.04.024
  • Miyazaki J. & Hirabayashi Y. 2011: Effect of the addition of Acacia mangium bark on thermosetting of phenol-formaldehyde resin. Wood Science and Technology 45(3): 449–460. DOI: 10.1007/s00226-010-0342-6
  • Molnár S. 2004: Faanyagismeret. Mezőgazdasági Szaktudás Kiadó, Budapest.
  • Muñoz F., Ballerini A. & Gacitúa W. 2013: Variability of physical, morphological and thermal properties of Eucalyptus nitens bark fiber. Maderas. Ciencia y tecnología 15(1): 17–30. DOI: 10.4067/S0718-221X2013005000002
  • Muszynski Z. & McNatt J.D. 1984: Investigations on the use of spruce bark in the manufacture of particleboard in Poland. Forest Products Journal 34(1): 28–35.
  • Nagy Gy., Novák Á. & Osztroluczky M. 1998: Zöld szerkezetek. Ybl Miklós Műszaki Főiskola, Multimédia Laboratórium, Publisher Kiadó, Budapest.
  • Narasimhachari N. & von Rudloff E. 1961: The chemical composition of the wood and bark extractives of Juniperus horisontalis Moench. Canadian Journal of Chemistry 39: 2572–2581. DOI: 10.1139/v61-339
  • Naunes E., Qbuilhó T. & Pereira H. 1999: Anatomy and chemical composition of Pinus pinea L. bark. Annals of Forest Science 56(6): 479–484. DOI: 10.1051/forest:19990604
  • Navid H., Laszczyk-Lauer M.N., Reichling J. & Schnitzler P. 2014: Pentacyclic triterpenes in birch bark extract inhibit early step of herpes simplex virus type 1 replication. Phytomedicine 21: 1273–1280. DOI: 10.1016/j.phymed.2014.06.007
  • Németh K. & Molnár S. 1983: Az akácfa égésmelegének és fűtőértékének vizsgálata. Faipar 33(3): 78–79.
  • Nemli G. & Colakoglu G. 2005: Effects of Mimosa Bark Usage on Some Properties of Particleboard, Turkish. Journal of Agriculture and Forestry 29(3): 227–230.
  • O’Hare G.P. 1974: Lichens and Bark Acidification as Indicators of Air Pollution in West Central Scotland. Journal Biogeography 1: 135–146. DOI: 10.2307/3037960
  • Obernberger I. & Thek G. 2004: Physical characterisation and chemical composition of densified biomass fuels with regard to their combustion behaviour. Biomass and Bioenergy 27: 653–669. DOI: 10.1016/j.biombioe.2003.07.006
  • Olander B. & Steenari B-M. 1995: Characterization of ashes from wood and straw. Biomass and Bioenergy 8(2): 105–115. DOI: 10.1016/0961-9534(95)00004-Q
  • Oramahi H.A. & Diba F. 2013: Maximizing the Production of Liquid Smoke from Bark of Durio by Studying Its Potential Compounds. Procedia Environmental Sciences 17: 60–69. DOI: 10.1016/j.proenv.2013.02.012
  • Orlandi L., Vilela F.C., Santa-Cecilia F.V., Dias D.F., Alves-da-Silva G. & Giusti-Paiva A. 2011: Anti-inflammatory and antinociceptive effects of the stem bark of Byrsonima intermedia A. Juss, Journal of Ethnopharmacology 137(3): 1469–1476. DOI: 10.1016/j.jep.2011.08.032
  • Oskolski A.A. & Wyk B.E.V. 2010: Wood and bark anatomy of Centella: scalariform perforation plates support an affinity with the subfamily Mackinlayoideae (Apiaceae). Plant Systematics and Evolution 289(3-4): 127–135. DOI: 10.1007/s00606-010-0338-6
  • Östlund L., Ahlberg L., Zackrisson O., Bergman I. & Arno S. 2009: Bark-peeling, food stress and tree spirits – the use pf pine inner bark for food in Scandinavia and North America. Journal of Ethnobiology 29(1): 94–112.
  • Palma G., Freer J. & Baeza J. 2003: Removal of metal ions by modified Pinus radiata bark and tannins from water solutions. Water Research 37: 4974–4980. DOI: 10.1016/j.watres.2003.08.008
  • Patnukao P. & Pavasant P. 2008: Activated carbon from Eucalyptus camaldulensis Dehn bark using phosphoric acid activation. Bioresource Technology 99(17): 8540–8543. DOI: 10.1016/j.biortech.2006.10.049
  • Pecznik P. & Körmendi P. (eds) 1997: Hőenergia gazdálkodás- biomassza tüzelés. Földművelésügyi Minisztérium, Műszaki Intézet, Gödöllő.
  • Pedieu R., Riedl B. & Pichette A. 2008a: Properties of white birch (Betula papyrifera) outer bark particleboards with reinforcement of coarse wood particles in the core layer. Annals of Forest Science 65(7): 1–9. DOI: 10.1051/forest:2008053
  • Pedieu R., Riedl B. & Pichette A. 2008b: Physical and mechanical properties of panel based on outer bark of white birch: mixed panels with wood particles versus wood fibers. Maderas. Ciencia y tecnología 10(3): 195–206. DOI: 10.4067/S0718-221X2008000300003
  • Pedieu R., Riedl B. & Pichette A. 2009: Properties of mixed particleboards based on white birch (Betula papyrifera) inner bark particles and reinforced with wood fibres. European Journal of Wood and Wood Products 67(1): 95–101. DOI: 10.1007/s00107-008-0297-6
  • Pinto P.C.R.O., Sousa A.F., Silvestrea A.J.D., Neto C.P., Gandini A., Eckerman C. et al. 2009: Quercus suber and Betula pendula outer barks as renewable sources of oleochemicals: A comparative study. Industrial Crops and Products 29(1): 126–132. DOI: 10.1016/j.indcrop.2008.04.015
  • Piotrowska P., Skoglund N., Grimm A., Boman C., Öhman M., Zevenhoven M., et al. 2012: Systematic studies of ash composition during the co-combustion of rapeseed cake and bark. Accepted for the proceedings of the 21st International Conference on Fluidized Bed Combustion, Naples (Italy), June 2012.
  • Poikolainen J. 1997: Sulphur and heavy metal concentrations in Scots pine bark in northern Finland and the Kola Peninsula. Water Air Soil Pollution 93: 395–408. DOI: 10.1023/A:1022160930526
  • Polubojárinov O.J. 1976: Plotnoszty dreveszini (A faanyag sűrűsége). Leszneja pramislenoszty, Moszkva.
  • Ponomarenko J., Trouillas P., Martin N., Dizhbite T., Krasilnikova J. & Telysheva G. 2014: Elucidation of antioxidant properties of wood bark derived saturated diarylheptanoids: A comprehensive (DFT-supported) understanding. Phytochemistry 103: 178–187. DOI: 10.1016/j.phytochem.2014.03.010
  • Popp M.P., Johnson J.D. & Massey T.L. 1991: Stimulation of resin flow in slash and loblolly pine by bark beetle vectored fungi. Canadian Journal of Forest Research 21(7): 1124–1126. DOI: 10.1139/x91-155
  • Portik K.I. 2006: A fenyő hasznosítása a Székelyföldön. Székelyföld – kulturális folyóirat 10(12).
  • Poyraz M.U. & Mat A. 2014: The miracle bark Chinhona and malaria in the Ottoman Empire. XI. National Conference on the History of Turkish Pharmacy, 25-28 May 2014., Poster Session, Abstract, Lokman Hekim Journal 60.
  • Ragland K.W. & Aerts D.J. 1991: Properties of wood for combustion analysis. Bioresource Technology 37: 161–168. DOI: 10.1016/0960-8524(91)90205-X
  • Randall J.M., Hautala E., Waiss A.C., & Tschernitz J.L. 1976: Modified barks as scavengers for heavy metal ions. Forest Products Journal 26: 46–50.
  • Rapaics R. 1940: A fakéreg. A természet 36(1): 2–5.
  • Rápóti J. & Romváry V. 1974: Gyógyító növények. Medicina, Budapest.
  • Ressel J.B. 2006: Wood yard operations. In: Sixta H. (ed): Handbook of Pulp. WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. 69–107. DOI: 10.1002/9783527619887.ch3
  • Robertson L. 2014: Rethinking Material Culture: Ugandan Bark Cloth. Published in Textile Society of America 2014 Biennial Symposium Proceedings: New Directions: Examining the Past, Creating the Future, Los Angeles, California, September 10–14.
  • Rowe J.W., Bower C.L. & Wagner E.R. 1969: Extractives of jack pine bark: Occurrence of cis- and trans-pinosylvin dimethyl ether and ferulic acid esters. Phytochemistry 8: 235–241. DOI: 10.1016/s0031-9422(00)85819-7
  • Saarela K.E., Harju L., Rajander J., Lill J.O., Heselius S.J., Lindroos A. & Mattsson K. 2005: Elemental analyses of pine bark and wood in an environmental study. Science of The Total Environment 343(1-3): 231–241. DOI: 10.1016/j.scitotenv.2004.09.043
  • Saayman H.M. & Oatley J.A. 1976: Wood adhesives from wattle bark extract. Forest Products Journal 27: 71–86.
  • Salem N.M. & Awwad A.M. 2014: Biosorption of Ni(II) from electroplating wastewater by modified (Eriobotrya japonica) loquat bark. Journal of Saudi Chemical Society 18: 379–386. DOI: 10.1016/j.jscs.2011.07.008
  • Santamaría J.M. & Martin A. 1997: Tree bark as a bioindicator of air pollution in Navarra, Spain. Water, Air, and Soil Pollution 98: 381–387. DOI: 10.1023/A:1026431211784
  • Santos E.N., Lima J.C.S., Noldin V.F., Cechinel-Filho V., Rao V.S.N., Lima E.F., et al. 2011: Anti-inflammatory, antinociceptive, and antipyretic effects of methanol extract of Cariniana rubra stem bark in animal models. Anais da Academia Brasileira de Ciências 83(2): 557–566. DOI: 10.1590/s0001-37652011005000006
  • Santos S.A.O., Pinto P.C.R.O., Silvestre A.J.D. & Neto C.P. 2010: Chemical composition and antioxidant activity of phenolic extracts of cork from Quercus suber L. Industrial Crops and Products 31: 521–526. DOI: 10.1016/j.indcrop.2010.02.001
  • Sári J.Sz. 2008: Tőzeghelyettesítő anyagok a paprikahajtatásban. Doktori Értekezés. Budapesti Corvinus Egyetem, Talajtan és Vízgazdálkodási Tanszék, Budapest.
  • Sarkar R., Chaudhary S.K., Sharma A., Yadav K.K., Nema N.K., Sekhoacha M., et al. 2014: Anti-biofilm activity of Marula – A study with the standardized bark extract. Journal of Ethnopharmacology 154: 170–175. DOI: 10.1016/j.jep.2014.03.067
  • Satake K., Tanaka A. & Kimura K. 1996: Accumulation of lead in tree trunk bark pockets as pollution time capsules. The Science of the Total Environment 181: 25–30. DOI: 10.1016/0048-9697(95)04955-X
  • Sato Y., Konishi T., & Takahashi A. 2004: Development of Insulation Material Using Natural Tree Bark. Transactions of the Materials Research Society of Japan 29(5): 1937–1940.
  • Sawidis T., Breuste J., Mitrovic M., Pavlovic P. & Tsigaridas K. 2011: Trees as bioindicator of heavy metal pollution in three European cities. Environmental Pollution 159: 3560–3570. DOI: 10.1016/j.envpol.2011.08.008
  • Schafer J.L., Breslow B.P., Hohmann M.G. & Hoffmann W.A. 2015: Relative bark thickness is correlated with tree species distribution along a fire frequency gradient. Fire Ecology 11(1): 74–87. DOI: 10.4996/fireecology.1101074
  • Schneider A. & Baums A. 1970: Wohin mit der Rinde? DRW-Verlag GmbH, Stuttgart.
  • Schulz H., Popp P., Huhn G., Stärk H.-J. & Schürmann G. 2000a: Biomonitoring of airborne inorganic and organic pollutants by means of pine tree barks. – I. Temporal and spatial variations. In: Smodis B. (ed): Biomonitoring of Atmospheric Pollution (with Emphasis on Trace Elements) BioMAP, IAEA-TECDOC-1152, International Atomic Energy Agency, Vienna, 149–158.
  • Schulz H., Schulz U., Huhn G. & Schürmann G. 2000b: Biomonitoring of airborne inorganic and organic pollutants by means of pine tree barks. – II. Deposition types and impact levels. In: Smodis B. (ed): Biomonitoring of Atmospheric Pollution (with Emphasis on Trace Elements) BioMAP, IAEA-TECDOC-1152, International Atomic Energy Agency, Vienna, 159–167.
  • Schweizer G. & Meigel P. 1977: Über die Verwertung von Entrindungsabfall als Porosierungsstoff in der Ziegelindustrie. Das Papier 31(10A): V27–V32.
  • Schweizer G. 1975: Versuche zur Optimierung der Schlammentwässerung und zur Verwertung von Rinde und Schlamm in der Ziegelindustrie. Wochenblatt für Papierfabrikation 103(22): 833–839.
  • Şen A., Isabel Miranda I., Santos S., Graça J. & Pereira H. 2010: The chemical composition of cork and phloem in the rhytidome of Quercus cerris bark. Industrial Crops and Products 31: 417–422. DOI: 10.1016/j.indcrop.2010.01.002
  • Şen A., Quilhó T. & Pereira H. 2011: The cellular structure of cork from Quercus cerris var. cerris bark in a materials’ perspective. Industrial Crops and Products 34: 929–936. DOI: 10.1016/j.indcrop.2011.02.015
  • Şensöz S. 2003: Slow pyrolysis of wood barks from Pinus brutia Ten. and product compositions. Bioresource Technology 89: 307–311. DOI: 10.1016/S0960-8524(03)00059-2
  • Sopp L. & Kolozs L. 2000: Fatömegszámítási táblázatok. Állami Erdészeti Szolgálat, Budapest, 24–29.
  • Starecki A. 1979: Spanplatten aus Holz mit Rindenanteil. Holztechnologie 2: 108.
  • Staxäng B. 1969: Acidification of bark of some deciduous trees. Oikos 20(2): 224–230. DOI: 10.2307/3543190
  • Steindor K., Palowski B., Góras P. & Nadgórska-Socha A. 2011: Assessment of bark reaction of selected tree species as an indicator of acid gaseous pollution. Polish Journal of Environment Studies 20(3): 619–622.
  • Suzuki K. 2006: Characterisation of airborne particulates and associated trace metals deposited on tree bark by ICP-OES, ICP-MS, SEM-EDX and laser ablation ICP-MS. Atmospheric Environment 40: 2626–2634. DOI: 10.1016/j.atmosenv.2005.12.022
  • Swieboda M. & Kalemba A. 1979: The bark of Scots pine (Pinus sylvestris L.) as a biological indicator of atmospheric air pollution. Acta Societatis Botanicorum Poloniae 48(4): 539–549. DOI: 10.5586/asbp.1979.045
  • Szalay L. 1981: A fahulladék hasznosítása. Műszaki Könyvkiadó, Budapest.
  • Szatyor Gy. 1986: Faművesség. Mezőgazdasági Kiadó, Budapest.
  • Szendrey I.1986: Faipari kémiai technológia 1. Egyetemi jegyzet, Sopron.
  • Terangpi R., Basumatary R., Tamuli A.K. & Teron R. 2013: Pharmacognostic and Physicochemical evaluation of stem bark of Acacia pennata (L.) Willd., a folk plant of the Dimasa tribe of Assam. Journal of Pharmacognosy and Phytochemistry 2(2): 134–140.
  • Thalhamer B. & Himmelsbach M. 2014: Characterization of quillaja bark extracts and evaluation of their purity using liquid chromatography–high resolution mass spectrometry. Phytochemistry Letters 8: 97–100. DOI: 10.1016/j.phytol.2014.02.009
  • Tóth L. 2005: Gyógynövények, drogok, fitoterápia. Kossuth Egyetemi Kiadó, Debrecen.
  • Ugolev B.N. 1986: Dreveszinovedenie sz osznovami lesznogo tovarovedenija. Lesznaja promüslennoszty, Moszkva.
  • Usta M. & Kara Z. 1997: The chemical composition of wood and bark of Cedrus libani A. Rich. Holz als Roh- und Werkstoff 55(2-4): 268. DOI: 10.1007/BF02990561
  • Vajda M. 2002: Kezelt fakéreg lipidek eltávolítására vízből. Műszaki Információ. Környezetvédelem (ISNN: 0209-5769). 2002(17-18): 61–70.
  • Valentín L., Kluczek-Turpeinen B., Willför S., Hemming J., Hatakka A., Steffen K. et al. 2010: Scots pine (Pinus sylvestris) bark composition and degradation by fungi: Potential substrate for bioremediation. Bioresource Technology 101: 2203–2209. DOI: 10.1016/j.biortech.2009.11.052
  • Vasconcelos C.F., Maranhão H.M., Batista T.M., Carneiro E.M., Ferreira F., Costa J., et al. 2011: Hypoglycaemic activity and molecular mechanisms of Caesalpinia ferrea Martius bark extract on streptozotocin-induced diabetes in Wistar rats. Journal of Ethnopharmacology 137(3): 1533–1541. DOI: 10.1016/j.jep.2011.08.059
  • Vázquez G., Fontenla E., Santos J., Freire M.S., González-Álvarez J. & Antorrena G. 2008: Antioxidant activity and phenolic content of chestnut (Castanea sativa) shell and eucalyptus (Eucalyptus globulus) bark extracts. Industrial crops and products 28: 279–285. DOI: 10.1016/j.indcrop.2008.03.003
  • Venkatesan T., Choi Y-W. & Kim Y-K. 2015: The cytotoxic nature of Acanthopanax sessiliflorus stem bark extracts in human breast cancer cells. Saudi Journal of Biological Sciences 22(6): 752–759. DOI: 10.1016/j.sjbs.2015.04.004
  • Venter P.B., Senekal N.D., Kemp G., Amra-Jordaan M., Khan P., Bonnet S.L. et al. 2012: Analysis of commercial proanthocyanidins. Part 3: The chemical composition of wattle (Acacia mearnsii) bark extract. Phytochemistry 83: 153–167. DOI: 10.1016/j.phytochem.2012.07.012
  • Verkerk P.J., Anttila P., Eggers J., Lindner M. & Asikainen A. 2011: The realisable potential supply of woody biomass from forests in the European Union. Forest Ecology and Management 261(11): 2007–2015. DOI: 10.1016/j.foreco.2011.02.027
  • Wang G.G. & Wangen S.R. 2011: Does frequent burning affect longleaf pine (Pinus palustris) bark thickness? Canadian Journal of Forest Research 41(7): 1562–1565. DOI: 10.1139/x11-074
  • Wang L. & Dibdiakova J. 2014: Characterization of Ashes from Different Wood Parts of Norway Spruce Tree. Chemical Engineering Transactions 37: 37–42. DOI: 10.3303/CET1437007
  • Wang Q., Zhu C., Wang Y., Huang Z., Li Z. & Huang B. 2003: A novel sampling method for present and historical monitoring of air pollution by using tree bark. Environmental Chemistry 22(3): 250–254.
  • Weißmann G. 1976: Reinigung Ölhaltiger Abwässer mit Rinde. Holz Zentralblatt 50: 661–662.
  • Whiting D., Tolan R., Mecham B. & Bauer M. 2011: Mulching with Wood/Bark Chips, Grass Clippings, and Rock. Colorado Master Gardenersm Program, Colorado Gardener Certificate Training, Colorado State University Extension, #245.
  • Winkler A. 1978: A fakéreg struktúrájának és megfelelő fizikai- mechanikai tulajdonságú fakéreglapok gyárthatóságának kapcsolata. Kandidátusi értekezés, Soproni Egyetem, Faipari Mérnöki Kar, Sopron.
  • Yemele M.C.N., Koubaa A., Cloutier A., Soulounganga P. & Wolcott M. 2010: Effect of bark fiber content and size on the mechanical properties of bark/HDPE composites. Composites Part A: Applied Science and Manufacturing 41(1): 131–137. DOI: 10.1016/j.compositesa.2009.06.005
  • Young H.E. 1971: Preliminary estimates of bark percentages and chemical elements in complete trees of eight species in Maine. Forest Products Journal 21(5): 56–59. [Aspen Bibliography. Paper 5461.]
  • Zhang L., Chen J., Wang Y., Wu D. & Xu M. 2010: Phenolic Extracts from Acacia mangium Bark and Their Antioxidant Activities. Molecules 15: 3567–3577. DOI: 10.3390/molecules15053567
  • Βarboutis I. & Lykidis C. 2014: The Effects of Bark on Fuel Characteristics of some Evergreen Mediterranean Hardwood Species. Proceedings of the 57th International Convention of Society of Wood Science and Technology, June 23-27, 2014, Zvolen, Slovakia, 533–540.
  • Melin S. 2008: Bark as feedstock for production of wood pellets. Wood Pellet Association of Canada. Letöltés ideje: 2016. 11. 14. URL
  • Vajda B. 2006: Parafa az építőiparban. Letöltés ideje: 2016. 02. 15. URL
  • Open Acces

    For non-commercial purposes, let others distribute and copy the article, and include in a collective work, as long as they cite the author(s) and the journal, and provided they do not alter or modify the article.

    Cite this article as:

    Börcsök, Z., Adamik, P. & Pásztory, Z. (2019): Review of the possibilities of bark utilization. Bulletin of Forestry Science, 9(2): 113-138. (in Hungarian) DOI: 10.17164/EK.2019.008

    Volume 9, Issue 2
    Pages: 113-138

    DOI: 10.17164/EK.2019.008

    First published:
    15 November 2019

    More articles
    by this authors

    4

    More articles by this authors in the Bulletin of Forestry Science