1. | Åberga G., Abrahamsen G., Steinnes E. & Hjelmseth H. 2004: Utilization of barkpockets as time capsules of atmospheric-lead pollution in Norway. Atmospheric Environment 38: 6231–6237. DOI: 10.1016/j.atmosenv.2004.06.041 |
2. | Abyshev A.Z., Agaev É.M. & Guseinov A.B. 2007: Studies of the chemical composition of Birch bark extracts (Cortex betula) from the Betulaceae family. Pharmaceutical Chemistry Journal 41(8): 419–423. DOI: 10.1007/s11094-007-0091-5 |
3. | Anderson A.B., Wong A. & King T.W. 1975: Douglas-Fir and Western Hemlock Bark Extracts as Bonding Agents for Particleboard. Forest Products Journal 25(3): 45–48. |
4. | Anderson A.B., Wong A. & Wu K.-T. 1974a: Utilization of white fir bark in particleboard. Forest Products Journal 24(1): 51–54. |
5. | Anderson A.B., Wong A. & Wu K.-T. 1974b: Utilization of white fir bark and its extract in particleboard. Forest Products Journal 24(7): 40–45. |
6. | Anderson A.B., Wong A. & Wu K.-T. 1974c: Utilization of Ponderosa pine bark and its extract in particleboard. Forest Products Journal 24(8): 48–53. |
7. | Andres Y., Dumont E., Le Cloirec P. & Ramirez-Lopez E. 2006: Wood bark as packing material in a biofilter used for air treatment. Environment Technology 27(12): 1297–1301. DOI: 10.1080/09593332708618747 |
8. | Annegowda H.V., Gooi T.S., Awang S.H.H., Alias N.A., Mordi M.N., Ramanathan S. et al. 2012: Evaluation of Analgesic and Antioxidant Potency of Various Extracts of Cinnamomum iners Bark. International Journal of Pharmacology 8(3): 198–203. DOI: 10.3923/ijp.2012.198.203 |
9. | Asztalos J. & Szabó P. 1975: A fakéreg hasznosítása Lengyelországban. Faipar 25(12): 363–366. |
10. | Asztalos J. 1977: A fakéreghasznosítás irányzatai a szocialista országokban. Faipar 27(8): 239–244. |
11. | Barnes D., Hamadan M.A. & Ottaway J.M. 1976: The lead, copper and zinc content of tree rings and bark. The Science of Total Environment 5: 63–67. DOI: 10.1016/0048-9697(76)90024-3 |
12. | Baroth R. 2005: Literature review of the latest development of wood debarking. Report A No 27, August 2005. University of Oulu, Control Engineering Laboratory. |
13. | Bauer G., Speck T., Blomer J., Bertling J. & Speck O. 2010: Insulation capability of the bark of trees with different fire adaptation. Journal of Materials Science 45(21): 5950–5959. DOI: 10.1007/s10853-010-4680-4 |
14. | Bellis D.J., McLeod C.W. & Satake K. 2002a: Pb and 206Pb/207Pb isotopic analysis of a tree bark pocket near Sheffield, UK recording historical change in airborne pollution during the 20th Century. The Science of the Total Environment 289: 169–176. DOI: 10.1016/S0048-9697(01)01037-3 |
15. | Bellis D.J., Satake K., Noda M., Nishimura N. & McLeod C.W. 2002b: Evaluation of the historical records of lead pollution in the annual growth rings and bark pockets of a 250-year-old Quercus crispula in Nikko, Japan. The Science of the Total Environment 295: 91–100. DOI: 10.1016/S0048-9697(02)00054-2 |
16. | Berahou A., Auhmani A., Fdil N., Benharref A., Jana M. & Gadhi C.A. 2007: Antibacterial activity of Quercus ilex bark’s extracts. Journal of Ethnopharmacology 112: 426–429. DOI: 10.1016/j.jep.2007.03.032 |
17. | Berlizov A.N., Blum O.B., Filby R.H., Malyuk I.A. & Tryshyn V.V. 2007: Testing applicability of black poplar (Populus nigra L.) bark to heavy metal air pollution monitoring in urban and industrial regions. Science of the Total Environment 372: 693–706. DOI: 10.1016/j.scitotenv.2006.10.029 |
18. | Bittner A. & Schneider A. 1975: Wertvoller Humus aus Rinde. Holz-Zentralblatt 73-74: 956. |
19. | Blanchet P., Cloutier A. & Riedl B. 2000: Particleboard made from hammer milled black spruce bark residues. Wood Science and Technology 34(1): 11–19. DOI: 10.1007/s002260050003 |
20. | Blossfeld O. 1977: Einsatzmöglichkeiten für Rinden sind geklärt. Informationen für den Industriezweig Schnittholz und Holzwaren 4: 319. |
21. | Boakye P.A., Brierley S.M., Pasilis S.P. & Balemba O.B. 2012: Garcinia buchananii bark extract is an effective anti-diarrheal remedy for lactose-induced diarrhea. Journal of Ethnopharmacology 142(2): 539–547. DOI: 10.1016/j.jep.2012.05.034 |
22. | Böhm P., Wolterbeek H., Verburg T. & Muśilek L. 1998: The use of tree bark for environmental pollution monitoring in the Czech Republic. Environmental Pollution 102: 243–250. DOI: 10.1016/S0269-7491(98)00082-7 |
23. | Butterfield M. & Peszlen I. 1997: A fatest háromdimenziós szerkezete. Faipari Tudományos Alapítvány, Budapest. |
24. | Castola V., Bighelli A., Rezzi S., Melloni G., Gladiali S., Desjobert J.-M. et al. 2002: Composition and chemical variability of the triterpene fraction of dichloromethane extracts of cork (Quercus suber L.). Industrial Crops and Products 15: 15–22. DOI: 10.1016/S0926-6690(01)00091-7 |
25. | Castro O., Silva J.M., Devezas T., Silva A. & Gil L. 2010: Cork agglomerates as an ideal core material in lightweight structures. Materials and Design 31: 425–432. DOI: 10.1016/j.matdes.2009.05.039 |
26. | Catry F.X., Rego F., Moreira F., Fernandes P.M. & Pausas J.G. 2010: Post-fire tree mortality in mixed forests of central Portugal. Forest Ecology and Management 260: 1184–1192. DOI: 10.1016/j.foreco.2010.07.010 |
27. | Chang Y.P. & Mitchell R.L. 1955: Chemical composition of common North American pulpwood barks. Tappi 38(5): 315–320. |
28. | Chen T.Y., Paulitsch M. & Soto G. 1972: On the suitability of the biological surface mass from spruce thinnings as raw material for particleboard. Holz als Roh- und Werkstoffe 30(1): 15–18. |
29. | Cheng X., Deng J., Zhang S.Y., Riedl B. & Cloutier A. 2006: Impact of bark content on the properties of medium density fiberboard (MDF) in four species grown in eastern Canada. Forest Products 56(3): 64–69. |
30. | Chow P., Nakayama F.S., Blahnik B., Youngquist J.A. & Coffelt T.A. 2008: Chemical constituents and physical properties of guayule wood and bark. Industrial Crops and Products 28: 303–308. DOI: 10.1016/j.indcrop.2008.03.006 |
31. | Chow S. & Obermajer A. 2004: Wood-to-bark adhesion of subalpine fir (Abies lasiocarpa) in extreme temperatures. Wood Science and Technology 38: 391–403. DOI 10.1007/s00226-004-0247-3 |
32. | Clark A., Phillips D.R. & Frederick D.J. 1985: Weight, Volume, and Physical Properties of Major Hardwood Species in the Gulf and Atlantic Coastal Plains. USDA, Forest Service, Southeastern Forest Experiment Station Research Paper SE-250. DOI: 10.2737/se-rp-250 |
33. | Comandini P., Lerma-García M.J., Simó-Alfonso E.F. & Toschi T.G. 2014: Tannin analysis of chestnut bark samples (Castanea sativa Mill.) by HPLC-DAD-MS. Food Chemistry 157: 290–295. DOI: 10.1016/j.foodchem.2014.02.003 |
34. | Conkova M. & Kubiznakova J. 2008: Lead isotope ratios in tree bark pockets: An indicator of past air pollution in the Czech Republic. Science of the Total Environment 404: 440–445. DOI: 10.1016/j.scitotenv.2008.04.025 |
35. | Coquet C., Ferré E., Peyronel D., Farra C.D. & Farnet A.M. 2008: Identification of new molecules extracted from Quercus suber L. cork. Comptes Rendus Biologies 331: 853–858. DOI: 10.1016/j.crvi.2008.08.011 |
36. | Cordeiro N., Belgacem M.N., Gandini A. & Neto C.P. 1997: Urethanes and polyurethanes from suberin: 1. Kinetic study. Industrial Crops and Products 6: 163–167. DOI: 10.1016/S0926-6690(96)00212-9 |
37. | Cordeiro N., Belgacem M.N., Silvestre A.J.D., Neto C.P. & Gandini A. 1998: Cork suberin as a new source of chemicals. 1. Isolation and chemical characterization of its composition. International Journal of Biological Macromolecules 22: 71–80. DOI: 10.1016/S0141-8130(97)00090-1 |
38. | Corder S.E. 1976: Properties and uses of bark as an energy source. Research paper 31. Oregon State University, School of Forestry, Forest Research Laboratory, Corvallis, Oregon, 97331. |
39. | Cutillas-Barreiro L., Ansias-Manso L., Fernández-Calvino D., Arias-Estévez M., Nóvoa-Munoz J.C., Fernández-Sanjurjo M.J., et al. 2014: Pine bark as bio-adsorbent for Cd, Cu, Ni, Pb and Zn: Batch-type and stirred flow chamber experiments. Journal of Environmental Management 144: 258–264. DOI: 10.1016/j.jenvman.2014.06.008 |
40. | Dedriea M., Jacquet N., Bombeck P-L., Hébert J. & Richel A. 2015: Oak barks as raw materials for the extraction of polyphenols for the chemical and pharmaceutical sectors: A regional case study. Industrial Crops and Products 70: 316–321. DOI: 10.1016/j.indcrop.2015.03.071 |
41. | Deppe H.J. & Ernst K. 1977: Taschenbuch der Spanplattentechnik. DRW-Verlag, Stuttgart. |
42. | Dibdiakova J., Gjølsjø S. & Wang L. 2014: Solid biofuels from forest – fuel specification and quality assurance. Inherent properties of Norway spruce biomass in some geographical locations in South Norway. Report from Norwegian forest and landscape institute 08/2014. |
43. | Dickinson M.B. & Johnson E.A. 2001: Fire effects on trees. In: Johnson E. (ed): Forest Fires: Behavior and Ecological Effects. Chapter 14. Academic Press, 477–525. DOI: 10.1016/b978-012386660-8/50016-7 |
44. | Dickinson M.B. 2002: Heat transfer and vascular cambium necrosis in the boles of trees during surface fires. In: Viegas D.X. (ed): Forest Fire Research & Wildland Fire Safety. Millpress, Rotterdam, 190–191. |
45. | Diouf P.N., Stevanovic T. & Cloutier A. 2009: Study on chemical composition, antioxidant and anti-inflammatory activities of hot water extract from Picea mariana bark and its proanthocyanidin-rich fractions. Food Chemistry 113: 897–902. DOI: 10.1016/j.foodchem.2008.08.016 |
46. | do Vale A.T. & Elias P.S. 2014: Bark thermal protection level of four tree species and the relationship between bark architecture and heat transfer. Ciência Florestal 24(4): 979–987. |
47. | Dost W.A. 1971: Redwood bark fiber in particleboard. Forest Products Journal 21(10): 38–43. |
48. | Dubkin M.Sz. & Daramanján P.M. 1978: Dreveszina i othody jejő pererabotki kak kormovie produkty. Himija dreneszny 1: 3. |
49. | Einspahr D.W., Van Eperen R.H. & Fiscus M.L. 1984: Morphological and bark strength characteristics important to wood/bark adhesion in hardwoods. Wood and Fiber Science 16(3): 339–348. |
50. | El-Hasan T., Al-Omari H., Jiries A. & Al-Nasir F. 2002: Cypress tree (Cupressus sempervirens L.) bark as an indicator for heavy metal pollution in the atmosphere of Amman City, Jordan. Environment International 28: 513–519. DOI: 10.1016/s0160-4120(02)00079-x |
51. | FAO 2015: Forest products 2009-2013. FAO Forestry Series No. 48. FAO Statistics Series No. 204. |
52. | Fatoki O.S. & Ayodele E.T. 1991: Zinc and copper levels in tree barks as indicators of environmental pollution. Environmental International 17: 455–460. DOI: 10.1016/0160-4120(91)90279-Y |
53. | Fekete Z. 1951: Erdőbecsléstan. Akadémiai Kiadó, Budapest, 145. |
54. | Feng S., Cheng S., Yuan Z., Leitch M. & Xu C. 2013: Valorization of bark for chemicals and materials: A review. Renewable and Sustainable Energy Reviews 26: 560–578. DOI: 10.1016/j.rser.2013.06.024 |
55. | Fernandes A., Sousa A., Mateus N., Cabral M. & de Freitas V. 2011: Analysis of phenolic compounds in cork from Quercus suber L. by HPLC–DAD/ESI–MS. Food Chemistry 125: 1398–1405. DOI: 10.1016/j.foodchem.2010.10.016 |
56. | Filbakk T., Jirjis R., Nurmi J. & Høibø O. 2011: The effect of bark content on quality parameters of Scots pine (Pinus sylvestris L.) pellets. Biomass and Bioenergy 35: 3342–3349. DOI: 10.1016/j.biombioe.2010.09.011 |
57. | Fodor F. 2004: Fásult személyi – Az árulkodó fakéreg. Természetbúvár 59(3): 2–5. |
58. | Fradinho D.M., Neto C.P., Evtuguin D., Jorge F.C., Irle M.A., Gil M.H. et al. 2002: Chemical characterisation of bark and of alkaline bark extracts from maritime pine grown in Portugal. Industrial Crops and Products 16: 23–32. DOI: 10.1016/S0926-6690(02)00004-3 |
59. | Gandini A., Neto C.P. & Silvestre A.J.D. 2006: Suberin: A promising renewable resource for novel macromolecular materials. Progress in Polymer Sciences 31: 878–892. DOI: 10.1016/j.progpolymsci.2006.07.004 |
60. | García D.E., Glasser W.G., Pizzi A., Paczkowski S. & Laborie M.-P. 2015: Hydroxypropyl tannin from Pinus pinaster bark as polyol source in urethane chemistry. European Polymer Journal 67: 152–165. DOI: 10.1016/j.eurpolymj.2015.03.039 |
61. | Gemici M., Gemici Y. & Tan K. 2006: Sulphur content of Red pine (Pinus brutia) needles and bark as indicator of atmospheric pollution in Southwest Turkey. Phytologia Balcanica 12(2): 267–272. |
62. | Gerencsér K. 2010: Fűrészipari technológia (jegyzet). NymE, Fa- és Papíripari Technológiák Intézet, Sopron. |
63. | Gertjejansen R. & Haygreen J.G. 1973: Effect of aspen bark from butt and upper logs on the physical properties of wafer-type and flake-type particleboards. Forest Products Journal 23(9): 66–71. |
64. | Ghosh D. 2006: Bark is the Hallmark. Resonance 11(3): 41–50. DOI: 10.1007/bf02835967 |
65. | Gil L. 1997: Cork powder waste: an overview. Biomass and Bioenergy 13(1-2): 59–61. DOI: 10.1016/S0961-9534(97)00033-0 |
66. | Graça J. & Santos S. 2006: Glycerol-derived ester oligomers from cork suberin. Chemistry and Physics of Lipids 144: 96–107. DOI: 10.1016/j.chemphyslip.2006.08.001 |
67. | Grace O.M., Prendergast H.D.V., Jager A.K. & van Staden J. 2003: Bark medicines used in traditional healthcare in KwaZulu-Natal, South Africa: An inventory. South African Journal of Botany 69(3): 301–363. DOI: 10.1016/S0254-6299(15)30318-5 |
68. | Grodzińska K. 1971: Acidification of tree bark as a measure of air pollution in southern Poland. Bulletin L'Académie Polonaise des Science, Série des Sciences Biologiques 19(3): 189–195. |
69. | Grodzińska K. 1978: Acidity of tree bark as a bioindicator of forest pollution in southern Poland. Water, Air and Soil Pollution 7: 3–7. |
70. | Grodzińska K. 1979: Tree-bark – sensitive biotest for environment acidification. Environment International 2(3): 173–176. DOI: 10.1016/0160-4120(79)90075-8 |
71. | Grodzińska K. 1982: Monitoring of air pollutants by mosses and tree bark. In: Steubing L. & Jäger H.-J. (eds): Monitoring of Air Pollutants by Plants – Methods and Problems. Dr W. Junk Publishers, The Hague, 33–42. |
72. | Guidi W., Piccioni E., Ginanni M. & Bonari E. 2008: Bark content estimation in poplar (Populus deltoides L.) short-rotation coppice in Central Italy. Biomass and Bioenergy 32: 518–524. DOI: 10.1016/j.biombioe.2007.11.012 |
73. | Gupta G.K. 2009: Development of bark-based environmental-friendly composite panels. Master thesis, Faculty of Forestry, University of Toronto. |
74. | Han L.E., Li B.T. & Lan S.F. 2008: Responses Of The Urban Roadside Trees To Traffic Environment. In: Sorial G.A. & Hong J (eds): Environmental Science & Technology (II). American Science Press, Houston, USA, 63–70. |
75. | Hargitai L. 2003: Fűrészáru. Szaktudás Kiadó Ház Rt., Budapest. |
76. | Harkin J.M. & Rowe J.W. 1971: Bark and its possible uses. USDA. Forest Service, Research note, FPL-091, Forest Products Laboratory. |
77. | Härtel O. 1982: Pollutants accumulation by bark. In: Steubing L. & Jäger H.-J. (eds): Monitoring of Air Pollutants by Plants – Methods and Problems. Dr W. Junk Publishers, The Hague, 137–147. |
78. | Heebink B.G. 1974: Particleboards from lodgepole pine forest residue. (USDA Forest Service research paper FPL , 221) U.S. Department of Agriculture, Forest Service, Forest Products Laboratory, Madison, Wisconsin. |
79. | Heinämäki J., Halenius A., Paavo M., Alakurtti S., Pitkänen P., Pirttimaa M., et al. 2015: Suberin fatty acids isolated from outer birch bark improve moisture barrier properties of cellulose ether films intended for tablet coatings. International Journal of Pharmaceutics 489(1-2): 91–99. DOI: 10.1016/j.ijpharm.2015.04.066 |
80. | Hengst G.E. & Dawson J.O. 1993: Bark thermal properties of selected central hardwood species. In: Gillespie A.R., Parker G.R., Pope P.E. & Rink G. (eds): Proceedings, 9th Central hardwood forest conference, 1993 March 8-10, West Lafayette, IN. General Technical Report NC-161. St. Paul, MN: U.S. Dept. of Agriculture, Forest Service, North Central Forest Experiment Station. 55–75. |
81. | Hernández-Olivares F., Bollati M.R., del Rio M. & Parga-Landa B. 1999: Development of cork-gypsum composites for building applications. Construction and Building Materials 13: 179–186. DOI: 10.1016/S0950-0618(99)00021-5 |
82. | Hoong Y.B., Paridah M.T. Luqman C.A., Koh M.P. & Loh Y.F. 2009: Fortification of sulfited tannin from the bark of Acacia mangium with phenol-formaldehyde for use as plywood adhesive. Industrial Crops and Products 30: 416–421. DOI: 10.1016/j.indcrop.2009.07.012 |
83. | Hoong Y.B., Paridah M.T., Loh Y.F., Jalaluddin H. & Chuah L.A. 2011: A new source of natural adhesive: Acacia mangium bark extracts co-polymerized with phenol-formaldehyde (PF) for bonding Mempisang (Annonaceae spp.) veneers. International Journal of Adhesion and Adhesives 31(3): 164–167. DOI: 10.1016/j.ijadhadh.2010.12.002 |
84. | Jové P., Olivella M.Á. & Cano L. 2011: Study of the variability in chemical composition of bark layers of Quercus suber L. from different production areas. BioResources 6(2): 1806–1815. |
85. | Jyske T., Laakso T., Latva-Mäenpää H., Tapanila T. & Saranpää P. 2014: Yield of stilbene glucosides from the bark of young and old Norway spruce stems. Biomass and Bioenergy 71: 216–227. DOI: 10.1016/j.biombioe.2014.10.005 |
86. | Kafle G.K., Chen L., Neibling H. & He B.B. 2015: Field evaluation of wood bark-based down-flow biofilters for mitigation of odor, ammonia, and hydrogen sulfide emissions from confined swine nursery barns. Journal of Environmental Management 147: 164–174. DOI: 10.1016/j.jenvman.2014.09.004 |
87. | Kain G., Barbu M-C., Hinterreiter S., Richter K. & Petuschnigg A. 2013a: Using bark as a heat insulation material. BioResources 8(3): 3718–3731. DOI: 10.15376/biores.8.3.3718-3731 |
88. | Kain G., Güttler V., Barbu M.-C., Petutschnigg A., Richter K. & Tondi G. 2014: Density related properties of bark insulation boards bonded with tannin hexamine resin. European Journal of Wood and Wood Products 72: 417–424. DOI: 10.1007/s00107-014-0798-4 |
89. | Kain G., Heinzmann B., Barbu M.C. & Petutschnigg A. 2013b: Softwood bark for modern composites. ProLigno 9(4): 460–468. |
90. | Kamikawa D., Kuroda K., Inoue M., Kubo S. & Yoshida T. 2009: Evaluation of combustion properties of wood pellets using a cone calorimeter. Journal of Wood Sciences 55: 453–457. DOI: 10.1007/s10086-009-1061-1 |
91. | Kehr E. 1979: Untersuchungen zum Einfluss der Rinde bei der Verarbeitung unentrindeten Holzes in der Deckschicht von Spanplatten. Holztechnologie 1: 32. |
92. | Kemppainen K., Siika-aho M., Pattathil S., Giovando S. & Kruus S. 2014: Spruce bark as an industrial source of condensed tannins and non-cellulosic sugars. Industrial Crops and Products 52: 158–168. DOI: 10.1016/j.indcrop.2013.10.009 |
93. | Kim Y-G., Lee J-H., Kim S-I., Baek K-H. & Lee J. 2015: Cinnamon bark oil and its components inhibit biofilm formation and toxin production. International Journal of Food Microbiology 195: 30–39. DOI: 10.1016/j.ijfoodmicro.2014.11.028 |
94. | Kiran A.W. & Chandrakant S.M. 2009: Pharmacognostic profiles of bark of Careya arborea Roxb. Journal of Pharmacognosy and Phytotherapy 1(5): 64–66. |
95. | Kotina E.L., Van Wyk B.-E. & Tilney P.M. 2014: Anatomy of the leaf and bark of Warburgia salutaris (Canellaceae), an important medicinal plant from South Africa. South African Journal of Botany 94: 177–181. DOI: 10.1016/j.sajb.2014.06.008 |
96. | Kuang Y., Zhou G., Wen D. & Liu S. 2006: Acidity and conductivity of Pinus massoniana bark as indicators to atmospheric acid deposition in Guangdong, China. Journal of Environmental Sciences 18(5): 916–920. DOI: 10.1016/S1001-0742(06)60014-4 |
97. | Kuik P. & Wolterbeek H.T. 1994. Factor-analysis of trace-element data from tree-bark samples in the Netherlands. Environmental Monitoring and Assessment 32: 207–226. DOI: 10.1007/bf00546277 |
98. | Labosky P.K. Jr., Holleman A., Dick J.W. & So D.T. 1977: Utilization of bark residues as poultry litter. Forest Products Journal 27(1): 28–32. |
99. | Lambert M.J. 1981: Inorganic constituents in wood and bark of New South Wales forest tree species. Research Note No. 45. Forestry Commission of New South Wales, Sydney. |
100. | Lawes M.J., Richards A., Dathe J. & Midgley J.J. 2011: Bark thickness determines fire resistance of selected tree species from fire-prone tropical savanna in north Australia. Plant Ecology 212: 2057–2069. DOI: 10.1007/s11258-011-9954-7 |
101. | Le Normand M., Mélida H., Holmbom B., Michaelsen T.E., Inngjerdingen M., Bulone V., et al. 2014: Hot-water extracts from the inner bark of Norway spruce with immunomodulating activities. Carbohydrate Polymers 101: 699–704. DOI: 10.1016/j.carbpol.2013.09.067 |
102. | Lehmann W.F. & Geimer R.L. 1974: Properties of structural particleboards from Douglas-fir forest residues. Forest Products Journal 24(10): 17–25. |
103. | Lehtikangas P. 2001: Quality properties of pelletised sawdust, logging residues and bark. Biomass and Bioenergy 20: 351–360. DOI: 10.1016/S0961-9534(00)00092-1 |
104. | Li D., Wang W., Tian F., Liao W. & Bae C.J. 2014: The oldest bark cloth beater in southern China (Dingmo, Bubing basin, Guangxi). Quaternary International 354: 184–189. DOI: 10.1016/j.quaint.2014.06.062 |
105. | Lin H., Zhang Y-W., Bao Y-L., Wu Y., Sun L-G., Yu C-L., et al. 2013: Secondary metabolites from the stem bark of Juglans mandshurica. Biochemical Systematics and Ecology 51: 184–188. DOI: 10.1016/j.bse.2013.08.010 |
106. | Lippo H., Poikolainen J. & Kubin E. 1995: The use of moss, lichen and pine bark in the nationwide monitoring of atmospheric heavy metal deposition in Finland. Water, Air, and Soil Pollution 85: 2241–2246. DOI: 10.1007/BF01186167 |
107. | Liu Z., Zhang X., Cui W., Zhang X., Li N., Chen J., et al. 2007: Evaluation of short-term and subchronic toxicity of magnolia bark extract in rats. Regulatory Toxicology and Pharmacology 49(3): 160–171. DOI: 10.1016/j.yrtph.2007.06.006 |
108. | Liverside R.M. & Murray M.H. 1977: Possible Use of Sawdust in Clay Building Bricks Should Help Many Sawmillers. Australian Forest Industries 2: 48. |
109. | Lötschert W. 1983: Immissionsanalysen im Raum Frankfurt unter Verwendung pflanzlicher Bioindikatoren. Verh. Ges. Ökol. 11: 277–290. |
110. | Mandiwana K.L., Resane T., Panichev N. & Ngobeni P. 2006: The application of tree bark as bio-indicator for the assessment of Cr(VI) in air pollution. Journal of Hazardous Materials B 137: 1241–1245. DOI: 10.1016/j.jhazmat.2006.04.015 |
111. | Marmor L. & Randlane T. 2007: Effects of road traffic on bark pH and epiphytic lichens in Tallinn. Folia Cryptogamica Estonica 43: 23–37. |
112. | Martin R.E. & Crist J.B. 1970: Elements of bark structure and terminology. Wood and Fiber Science 2(3): 269–279. |
113. | Miles P.D. & Smith W.B. 2009: Specific Gravity and Other Properties of Wood and Bark for 156 Tree Species Found in North America. Res. Note NRS-38. Newtown Square, PA: U.S. Department of Agriculture, Forest Service, Northern Research Station. DOI: 10.2737/NRS-RN-38 |
114. | Millkin D.E. 1955: Determination of bark volumes and fuel properties. Pulp and paper magazine of Canada 56(13): 106–108. |
115. | Miranda I., Gominho J., Mirra I. & Pereira H. 2012: Chemical characterization of barks from Picea abies and Pinus sylvestris after fractioning into different particle sizes. Industrial Crops and Products 36: 395–400. DOI: 10.1016/j.indcrop.2011.10.035 |
116. | Miranda I., Gominho J., Mirra I. & Pereira H. 2013: Fractioning and chemical characterization of barks of Betula pendula and Eucalyptus globulus. Industrial Crops and Products 41: 299–305. DOI: 10.1016/j.indcrop.2012.04.024 |
117. | Miyazaki J. & Hirabayashi Y. 2011: Effect of the addition of Acacia mangium bark on thermosetting of phenol-formaldehyde resin. Wood Science and Technology 45(3): 449–460. DOI: 10.1007/s00226-010-0342-6 |
118. | Molnár S. 2004: Faanyagismeret. Mezőgazdasági Szaktudás Kiadó, Budapest. |
119. | Muñoz F., Ballerini A. & Gacitúa W. 2013: Variability of physical, morphological and thermal properties of Eucalyptus nitens bark fiber. Maderas. Ciencia y tecnología 15(1): 17–30. DOI: 10.4067/S0718-221X2013005000002 |
120. | Muszynski Z. & McNatt J.D. 1984: Investigations on the use of spruce bark in the manufacture of particleboard in Poland. Forest Products Journal 34(1): 28–35. |
121. | Nagy Gy., Novák Á. & Osztroluczky M. 1998: Zöld szerkezetek. Ybl Miklós Műszaki Főiskola, Multimédia Laboratórium, Publisher Kiadó, Budapest. |
122. | Narasimhachari N. & von Rudloff E. 1961: The chemical composition of the wood and bark extractives of Juniperus horisontalis Moench. Canadian Journal of Chemistry 39: 2572–2581. DOI: 10.1139/v61-339 |
123. | Naunes E., Qbuilhó T. & Pereira H. 1999: Anatomy and chemical composition of Pinus pinea L. bark. Annals of Forest Science 56(6): 479–484. DOI: 10.1051/forest:19990604 |
124. | Navid H., Laszczyk-Lauer M.N., Reichling J. & Schnitzler P. 2014: Pentacyclic triterpenes in birch bark extract inhibit early step of herpes simplex virus type 1 replication. Phytomedicine 21: 1273–1280. DOI: 10.1016/j.phymed.2014.06.007 |
125. | Németh K. & Molnár S. 1983: Az akácfa égésmelegének és fűtőértékének vizsgálata. Faipar 33(3): 78–79. |
126. | Nemli G. & Colakoglu G. 2005: Effects of Mimosa Bark Usage on Some Properties of Particleboard, Turkish. Journal of Agriculture and Forestry 29(3): 227–230. |
127. | O’Hare G.P. 1974: Lichens and Bark Acidification as Indicators of Air Pollution in West Central Scotland. Journal Biogeography 1: 135–146. DOI: 10.2307/3037960 |
128. | Obernberger I. & Thek G. 2004: Physical characterisation and chemical composition of densified biomass fuels with regard to their combustion behaviour. Biomass and Bioenergy 27: 653–669. DOI: 10.1016/j.biombioe.2003.07.006 |
129. | Olander B. & Steenari B-M. 1995: Characterization of ashes from wood and straw. Biomass and Bioenergy 8(2): 105–115. DOI: 10.1016/0961-9534(95)00004-Q |
130. | Oramahi H.A. & Diba F. 2013: Maximizing the Production of Liquid Smoke from Bark of Durio by Studying Its Potential Compounds. Procedia Environmental Sciences 17: 60–69. DOI: 10.1016/j.proenv.2013.02.012 |
131. | Orlandi L., Vilela F.C., Santa-Cecilia F.V., Dias D.F., Alves-da-Silva G. & Giusti-Paiva A. 2011: Anti-inflammatory and antinociceptive effects of the stem bark of Byrsonima intermedia A. Juss, Journal of Ethnopharmacology 137(3): 1469–1476. DOI: 10.1016/j.jep.2011.08.032 |
132. | Oskolski A.A. & Wyk B.E.V. 2010: Wood and bark anatomy of Centella: scalariform perforation plates support an affinity with the subfamily Mackinlayoideae (Apiaceae). Plant Systematics and Evolution 289(3-4): 127–135. DOI: 10.1007/s00606-010-0338-6 |
133. | Östlund L., Ahlberg L., Zackrisson O., Bergman I. & Arno S. 2009: Bark-peeling, food stress and tree spirits – the use pf pine inner bark for food in Scandinavia and North America. Journal of Ethnobiology 29(1): 94–112. |
134. | Palma G., Freer J. & Baeza J. 2003: Removal of metal ions by modified Pinus radiata bark and tannins from water solutions. Water Research 37: 4974–4980. DOI: 10.1016/j.watres.2003.08.008 |
135. | Patnukao P. & Pavasant P. 2008: Activated carbon from Eucalyptus camaldulensis Dehn bark using phosphoric acid activation. Bioresource Technology 99(17): 8540–8543. DOI: 10.1016/j.biortech.2006.10.049 |
136. | Pecznik P. & Körmendi P. (eds) 1997: Hőenergia gazdálkodás- biomassza tüzelés. Földművelésügyi Minisztérium, Műszaki Intézet, Gödöllő. |
137. | Pedieu R., Riedl B. & Pichette A. 2008a: Properties of white birch (Betula papyrifera) outer bark particleboards with reinforcement of coarse wood particles in the core layer. Annals of Forest Science 65(7): 1–9. DOI: 10.1051/forest:2008053 |
138. | Pedieu R., Riedl B. & Pichette A. 2008b: Physical and mechanical properties of panel based on outer bark of white birch: mixed panels with wood particles versus wood fibers. Maderas. Ciencia y tecnología 10(3): 195–206. DOI: 10.4067/S0718-221X2008000300003 |
139. | Pedieu R., Riedl B. & Pichette A. 2009: Properties of mixed particleboards based on white birch (Betula papyrifera) inner bark particles and reinforced with wood fibres. European Journal of Wood and Wood Products 67(1): 95–101. DOI: 10.1007/s00107-008-0297-6 |
140. | Pinto P.C.R.O., Sousa A.F., Silvestrea A.J.D., Neto C.P., Gandini A., Eckerman C. et al. 2009: Quercus suber and Betula pendula outer barks as renewable sources of oleochemicals: A comparative study. Industrial Crops and Products 29(1): 126–132. DOI: 10.1016/j.indcrop.2008.04.015 |
141. | Piotrowska P., Skoglund N., Grimm A., Boman C., Öhman M., Zevenhoven M., et al. 2012: Systematic studies of ash composition during the co-combustion of rapeseed cake and bark. Accepted for the proceedings of the 21st International Conference on Fluidized Bed Combustion, Naples (Italy), June 2012. |
142. | Poikolainen J. 1997: Sulphur and heavy metal concentrations in Scots pine bark in northern Finland and the Kola Peninsula. Water Air Soil Pollution 93: 395–408. DOI: 10.1023/A:1022160930526 |
143. | Polubojárinov O.J. 1976: Plotnoszty dreveszini (A faanyag sűrűsége). Leszneja pramislenoszty, Moszkva. |
144. | Ponomarenko J., Trouillas P., Martin N., Dizhbite T., Krasilnikova J. & Telysheva G. 2014: Elucidation of antioxidant properties of wood bark derived saturated diarylheptanoids: A comprehensive (DFT-supported) understanding. Phytochemistry 103: 178–187. DOI: 10.1016/j.phytochem.2014.03.010 |
145. | Popp M.P., Johnson J.D. & Massey T.L. 1991: Stimulation of resin flow in slash and loblolly pine by bark beetle vectored fungi. Canadian Journal of Forest Research 21(7): 1124–1126. DOI: 10.1139/x91-155 |
146. | Portik K.I. 2006: A fenyő hasznosítása a Székelyföldön. Székelyföld – kulturális folyóirat 10(12). |
147. | Poyraz M.U. & Mat A. 2014: The miracle bark Chinhona and malaria in the Ottoman Empire. XI. National Conference on the History of Turkish Pharmacy, 25-28 May 2014., Poster Session, Abstract, Lokman Hekim Journal 60. |
148. | Ragland K.W. & Aerts D.J. 1991: Properties of wood for combustion analysis. Bioresource Technology 37: 161–168. DOI: 10.1016/0960-8524(91)90205-X |
149. | Randall J.M., Hautala E., Waiss A.C., & Tschernitz J.L. 1976: Modified barks as scavengers for heavy metal ions. Forest Products Journal 26: 46–50. |
150. | Rapaics R. 1940: A fakéreg. A természet 36(1): 2–5. |
151. | Rápóti J. & Romváry V. 1974: Gyógyító növények. Medicina, Budapest. |
152. | Ressel J.B. 2006: Wood yard operations. In: Sixta H. (ed): Handbook of Pulp. WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. 69–107. DOI: 10.1002/9783527619887.ch3 |
153. | Robertson L. 2014: Rethinking Material Culture: Ugandan Bark Cloth. Published in Textile Society of America 2014 Biennial Symposium Proceedings: New Directions: Examining the Past, Creating the Future, Los Angeles, California, September 10–14. |
154. | Rowe J.W., Bower C.L. & Wagner E.R. 1969: Extractives of jack pine bark: Occurrence of cis- and trans-pinosylvin dimethyl ether and ferulic acid esters. Phytochemistry 8: 235–241. DOI: 10.1016/s0031-9422(00)85819-7 |
155. | Saarela K.E., Harju L., Rajander J., Lill J.O., Heselius S.J., Lindroos A. & Mattsson K. 2005: Elemental analyses of pine bark and wood in an environmental study. Science of The Total Environment 343(1-3): 231–241. DOI: 10.1016/j.scitotenv.2004.09.043 |
156. | Saayman H.M. & Oatley J.A. 1976: Wood adhesives from wattle bark extract. Forest Products Journal 27: 71–86. |
157. | Salem N.M. & Awwad A.M. 2014: Biosorption of Ni(II) from electroplating wastewater by modified (Eriobotrya japonica) loquat bark. Journal of Saudi Chemical Society 18: 379–386. DOI: 10.1016/j.jscs.2011.07.008 |
158. | Santamaría J.M. & Martin A. 1997: Tree bark as a bioindicator of air pollution in Navarra, Spain. Water, Air, and Soil Pollution 98: 381–387. DOI: 10.1023/A:1026431211784 |
159. | Santos E.N., Lima J.C.S., Noldin V.F., Cechinel-Filho V., Rao V.S.N., Lima E.F., et al. 2011: Anti-inflammatory, antinociceptive, and antipyretic effects of methanol extract of Cariniana rubra stem bark in animal models. Anais da Academia Brasileira de Ciências 83(2): 557–566. DOI: 10.1590/s0001-37652011005000006 |
160. | Santos S.A.O., Pinto P.C.R.O., Silvestre A.J.D. & Neto C.P. 2010: Chemical composition and antioxidant activity of phenolic extracts of cork from Quercus suber L. Industrial Crops and Products 31: 521–526. DOI: 10.1016/j.indcrop.2010.02.001 |
161. | Sári J.Sz. 2008: Tőzeghelyettesítő anyagok a paprikahajtatásban. Doktori Értekezés. Budapesti Corvinus Egyetem, Talajtan és Vízgazdálkodási Tanszék, Budapest. |
162. | Sarkar R., Chaudhary S.K., Sharma A., Yadav K.K., Nema N.K., Sekhoacha M., et al. 2014: Anti-biofilm activity of Marula – A study with the standardized bark extract. Journal of Ethnopharmacology 154: 170–175. DOI: 10.1016/j.jep.2014.03.067 |
163. | Satake K., Tanaka A. & Kimura K. 1996: Accumulation of lead in tree trunk bark pockets as pollution time capsules. The Science of the Total Environment 181: 25–30. DOI: 10.1016/0048-9697(95)04955-X |
164. | Sato Y., Konishi T., & Takahashi A. 2004: Development of Insulation Material Using Natural Tree Bark. Transactions of the Materials Research Society of Japan 29(5): 1937–1940. |
165. | Sawidis T., Breuste J., Mitrovic M., Pavlovic P. & Tsigaridas K. 2011: Trees as bioindicator of heavy metal pollution in three European cities. Environmental Pollution 159: 3560–3570. DOI: 10.1016/j.envpol.2011.08.008 |
166. | Schafer J.L., Breslow B.P., Hohmann M.G. & Hoffmann W.A. 2015: Relative bark thickness is correlated with tree species distribution along a fire frequency gradient. Fire Ecology 11(1): 74–87. DOI: 10.4996/fireecology.1101074 |
167. | Schneider A. & Baums A. 1970: Wohin mit der Rinde? DRW-Verlag GmbH, Stuttgart. |
168. | Schulz H., Popp P., Huhn G., Stärk H.-J. & Schürmann G. 2000a: Biomonitoring of airborne inorganic and organic pollutants by means of pine tree barks. – I. Temporal and spatial variations. In: Smodis B. (ed): Biomonitoring of Atmospheric Pollution (with Emphasis on Trace Elements) BioMAP, IAEA-TECDOC-1152, International Atomic Energy Agency, Vienna, 149–158. |
169. | Schulz H., Schulz U., Huhn G. & Schürmann G. 2000b: Biomonitoring of airborne inorganic and organic pollutants by means of pine tree barks. – II. Deposition types and impact levels. In: Smodis B. (ed): Biomonitoring of Atmospheric Pollution (with Emphasis on Trace Elements) BioMAP, IAEA-TECDOC-1152, International Atomic Energy Agency, Vienna, 159–167. |
170. | Schweizer G. & Meigel P. 1977: Über die Verwertung von Entrindungsabfall als Porosierungsstoff in der Ziegelindustrie. Das Papier 31(10A): V27–V32. |
171. | Schweizer G. 1975: Versuche zur Optimierung der Schlammentwässerung und zur Verwertung von Rinde und Schlamm in der Ziegelindustrie. Wochenblatt für Papierfabrikation 103(22): 833–839. |
172. | Şen A., Isabel Miranda I., Santos S., Graça J. & Pereira H. 2010: The chemical composition of cork and phloem in the rhytidome of Quercus cerris bark. Industrial Crops and Products 31: 417–422. DOI: 10.1016/j.indcrop.2010.01.002 |
173. | Şen A., Quilhó T. & Pereira H. 2011: The cellular structure of cork from Quercus cerris var. cerris bark in a materials’ perspective. Industrial Crops and Products 34: 929–936. DOI: 10.1016/j.indcrop.2011.02.015 |
174. | Şensöz S. 2003: Slow pyrolysis of wood barks from Pinus brutia Ten. and product compositions. Bioresource Technology 89: 307–311. DOI: 10.1016/S0960-8524(03)00059-2 |
175. | Sopp L. & Kolozs L. 2000: Fatömegszámítási táblázatok. Állami Erdészeti Szolgálat, Budapest, 24–29. |
176. | Starecki A. 1979: Spanplatten aus Holz mit Rindenanteil. Holztechnologie 2: 108. |
177. | Staxäng B. 1969: Acidification of bark of some deciduous trees. Oikos 20(2): 224–230. DOI: 10.2307/3543190 |
178. | Steindor K., Palowski B., Góras P. & Nadgórska-Socha A. 2011: Assessment of bark reaction of selected tree species as an indicator of acid gaseous pollution. Polish Journal of Environment Studies 20(3): 619–622. |
179. | Suzuki K. 2006: Characterisation of airborne particulates and associated trace metals deposited on tree bark by ICP-OES, ICP-MS, SEM-EDX and laser ablation ICP-MS. Atmospheric Environment 40: 2626–2634. DOI: 10.1016/j.atmosenv.2005.12.022 |
180. | Swieboda M. & Kalemba A. 1979: The bark of Scots pine (Pinus sylvestris L.) as a biological indicator of atmospheric air pollution. Acta Societatis Botanicorum Poloniae 48(4): 539–549. DOI: 10.5586/asbp.1979.045 |
181. | Szalay L. 1981: A fahulladék hasznosítása. Műszaki Könyvkiadó, Budapest. |
182. | Szatyor Gy. 1986: Faművesség. Mezőgazdasági Kiadó, Budapest. |
183. | Szendrey I.1986: Faipari kémiai technológia 1. Egyetemi jegyzet, Sopron. |
184. | Terangpi R., Basumatary R., Tamuli A.K. & Teron R. 2013: Pharmacognostic and Physicochemical evaluation of stem bark of Acacia pennata (L.) Willd., a folk plant of the Dimasa tribe of Assam. Journal of Pharmacognosy and Phytochemistry 2(2): 134–140. |
185. | Thalhamer B. & Himmelsbach M. 2014: Characterization of quillaja bark extracts and evaluation of their purity using liquid chromatography–high resolution mass spectrometry. Phytochemistry Letters 8: 97–100. DOI: 10.1016/j.phytol.2014.02.009 |
186. | Tóth L. 2005: Gyógynövények, drogok, fitoterápia. Kossuth Egyetemi Kiadó, Debrecen. |
187. | Ugolev B.N. 1986: Dreveszinovedenie sz osznovami lesznogo tovarovedenija. Lesznaja promüslennoszty, Moszkva. |
188. | Usta M. & Kara Z. 1997: The chemical composition of wood and bark of Cedrus libani A. Rich. Holz als Roh- und Werkstoff 55(2-4): 268. DOI: 10.1007/BF02990561 |
189. | Vajda M. 2002: Kezelt fakéreg lipidek eltávolítására vízből. Műszaki Információ. Környezetvédelem (ISNN: 0209-5769). 2002(17-18): 61–70. |
190. | Valentín L., Kluczek-Turpeinen B., Willför S., Hemming J., Hatakka A., Steffen K. et al. 2010: Scots pine (Pinus sylvestris) bark composition and degradation by fungi: Potential substrate for bioremediation. Bioresource Technology 101: 2203–2209. DOI: 10.1016/j.biortech.2009.11.052 |
191. | Vasconcelos C.F., Maranhão H.M., Batista T.M., Carneiro E.M., Ferreira F., Costa J., et al. 2011: Hypoglycaemic activity and molecular mechanisms of Caesalpinia ferrea Martius bark extract on streptozotocin-induced diabetes in Wistar rats. Journal of Ethnopharmacology 137(3): 1533–1541. DOI: 10.1016/j.jep.2011.08.059 |
192. | Vázquez G., Fontenla E., Santos J., Freire M.S., González-Álvarez J. & Antorrena G. 2008: Antioxidant activity and phenolic content of chestnut (Castanea sativa) shell and eucalyptus (Eucalyptus globulus) bark extracts. Industrial crops and products 28: 279–285. DOI: 10.1016/j.indcrop.2008.03.003 |
193. | Venkatesan T., Choi Y-W. & Kim Y-K. 2015: The cytotoxic nature of Acanthopanax sessiliflorus stem bark extracts in human breast cancer cells. Saudi Journal of Biological Sciences 22(6): 752–759. DOI: 10.1016/j.sjbs.2015.04.004 |
194. | Venter P.B., Senekal N.D., Kemp G., Amra-Jordaan M., Khan P., Bonnet S.L. et al. 2012: Analysis of commercial proanthocyanidins. Part 3: The chemical composition of wattle (Acacia mearnsii) bark extract. Phytochemistry 83: 153–167. DOI: 10.1016/j.phytochem.2012.07.012 |
195. | Verkerk P.J., Anttila P., Eggers J., Lindner M. & Asikainen A. 2011: The realisable potential supply of woody biomass from forests in the European Union. Forest Ecology and Management 261(11): 2007–2015. DOI: 10.1016/j.foreco.2011.02.027 |
196. | Wang G.G. & Wangen S.R. 2011: Does frequent burning affect longleaf pine (Pinus palustris) bark thickness? Canadian Journal of Forest Research 41(7): 1562–1565. DOI: 10.1139/x11-074 |
197. | Wang L. & Dibdiakova J. 2014: Characterization of Ashes from Different Wood Parts of Norway Spruce Tree. Chemical Engineering Transactions 37: 37–42. DOI: 10.3303/CET1437007 |
198. | Wang Q., Zhu C., Wang Y., Huang Z., Li Z. & Huang B. 2003: A novel sampling method for present and historical monitoring of air pollution by using tree bark. Environmental Chemistry 22(3): 250–254. |
199. | Weißmann G. 1976: Reinigung Ölhaltiger Abwässer mit Rinde. Holz Zentralblatt 50: 661–662. |
200. | Whiting D., Tolan R., Mecham B. & Bauer M. 2011: Mulching with Wood/Bark Chips, Grass Clippings, and Rock. Colorado Master Gardenersm Program, Colorado Gardener Certificate Training, Colorado State University Extension, #245. |
201. | Winkler A. 1978: A fakéreg struktúrájának és megfelelő fizikai- mechanikai tulajdonságú fakéreglapok gyárthatóságának kapcsolata. Kandidátusi értekezés, Soproni Egyetem, Faipari Mérnöki Kar, Sopron. |
202. | Yemele M.C.N., Koubaa A., Cloutier A., Soulounganga P. & Wolcott M. 2010: Effect of bark fiber content and size on the mechanical properties of bark/HDPE composites. Composites Part A: Applied Science and Manufacturing 41(1): 131–137. DOI: 10.1016/j.compositesa.2009.06.005 |
203. | Young H.E. 1971: Preliminary estimates of bark percentages and chemical elements in complete trees of eight species in Maine. Forest Products Journal 21(5): 56–59. [Aspen Bibliography. Paper 5461.] |
204. | Zhang L., Chen J., Wang Y., Wu D. & Xu M. 2010: Phenolic Extracts from Acacia mangium Bark and Their Antioxidant Activities. Molecules 15: 3567–3577. DOI: 10.3390/molecules15053567 |
205. | Βarboutis I. & Lykidis C. 2014: The Effects of Bark on Fuel Characteristics of some Evergreen Mediterranean Hardwood Species. Proceedings of the 57th International Convention of Society of Wood Science and Technology, June 23-27, 2014, Zvolen, Slovakia, 533–540. |
206. | Melin S. 2008: Bark as feedstock for production of wood pellets. Wood Pellet Association of Canada. Letöltés ideje: 2016. 11. 14. URL |
207. | Vajda B. 2006: Parafa az építőiparban. Letöltés ideje: 2016. 02. 15. URL |