Bulletin of Forestry Science / Volume 10 / Issue 1 / Pages 29-39
previous article | next article

Improving the properties of bark based insulation panels

Zoltán Börcsök & Zoltán Pásztory

Correspondence

Correspondence: Börcsök Zoltán

Postal address: H-9400 Sopron, Bajcsy-Zs. u. 4.

e-mail: borcsok.zoltan[at]uni-sopron.hu

Abstract

Several studies have investigated natural-based insulation materials, including bark. The physical and mechanical properties of the bark panels are worse than those of wood panels. The aims of this study were to manufacture an insulation panel from Pannónia poplar bark and investigate the reinforcement possibilities with short glass fiber, overlaying fibreglass mesh, fibreglass mat and fibreglass woven fabric and two types of paper, as well as inner glass fiber mesh. Further, we tried to improve the thermal conductivity of the panels by heat treating the bark particles. We studied their physical and mechanical properties and thermal conductivity. The target density was 350 kg/m3 , the thermal conductivity of the panels ranged from 0.067 to 0.078 W/m∙K. The reinforcement slightly decreased thermal conductivity and significantly increased mechanical properties. Thermal conductivity is determined by density. The heat pre-treatment of the raw material slightly decreased the thermal conductivity.

Keywords: tree bark, thermal insulation, reinforcement, glass fiber, heat treatment

  • Arslan M.E. 2016: Effects of basalt and glass chopped fibers addition on fracture energy and mechanical properties of ordinary concrete: CMOD measurement. Construction and Building Materials 114: 383-391. DOI: 10.1016/j.conbuildmat.2016.03.176
  • Aydin I., Demirkir C., Colak S.& Colakoglu G. 2017: Utilization of bark flours as additive in plywood manufacturing. European Journal of Wood and Wood Products 75: 63–69. DOI: 10.1007/s00107-016-1096-0
  • Bal B.C. 2014: Flexural properties, bonding performance and splitting strength of LVL reinforced with woven glass fiber. Construction and Building Materials 51: 9–14. DOI: 10.1016/j.conbuildmat.2013.10.041
  • Biblis E.J. 1965: Analysis of wood-fibreglass composite beams within and beyond the elastic region. Forest Products Journal 15 (2): 81–88.
  • Biblis E.J. & Carino H.F. 2000: Flexural properties of southern pine plywood overlaid with fibreglass-reinforced plastic. Forest Products Journal 50(1): 34–36.
  • Blanchet P., Cloutier A. & Riedl B. 2000: Particleboard made from hammer milled black spruce bark residues. Wood Science and Technology 34: 11–19. DOI: 10.1007/s002260050003
  • Blankenhorn P.R, Murphey W.K., Rishel L.E. & Kline D.E. 1977: Some mechanical properties of impregnated bark board. Forest Products Journal 27(6): 31–38.
  • Cai Z. 2006: Selected properties of MDF and flakeboard overlaid with fibreglass mats. Forest Products Journal 56(11/12):142–146
  • Chow P. 1976: Properties of medium-density, dry-formed fiberboard from seven hardwood residues and bark. Forest Products Journal 26(5): 48–55.
  • Gao Y., Xu K., Peng H., Jiang J., Zhao R. & Lu J. 2019: Effect of heat treatment on water absorption of chinese fir using TD-NMR. Applied Sciences 9: 78. DOI: 10.3390/app9010078
  • Hill C.A.S. 2006: Wood Modification, Chemical, Thermal and Other Processes; Wiley: England
  • Hurtado P.L., Rouilly A., Vandenbossche V. & Raynaud C. 2016: A review on the properties of cellulose fibre insulation. Building and Environment 96: 170–177. DOI: 10.1016/j.buildenv.2015.09.031
  • Kain G., Barbu M.C., Hinterreiter S., Richter K. & Petuschnigg A. 2013: Using bark as a heat insulation material. BioResources 8(3): 3718–3731. DOI: 10.15376/biores.8.3.3718-3731
  • Kamke F.A. 1989: Thermal conductivity of wood-based panels. In: Hasselman, D.P.H. & Thomas, J.R. (eds): Thermal conductivity 20. Proceedings of the Twentieth International Thermal Conductivity Conference, held October 19–21, 1987, in Blacksburg, Virginia. 249–260. ISBN 978-1-4613-0761-7
  • Kekkonen P.M., Ylisassi A. & Telkki V.V. 2014: Absorption of water in thermally modified pine wood as studied by Nuclear Magnetic Resonance. Journal of Physical Chemistry C 118: 2146–2153. DOI: 10.1021/jp411199r
  • Kizilkanat A.B., Kabay N.; Akyüncü V., Chowdhury S. & Akça A.H. 2015: Mechanical properties and fracture behavior of basalt and glass fiber reinforced concrete: An experimental study. Construction and Building Materials 100: 218–224. DOI: 10.1016/j.conbuildmat.2015.10.006
  • Kocaefe D., Poncsak S., Doré G. & Younsi R. 2008: Effect of heat treatment on the wettability of white ash and soft maple by water. Holz Roh Werkstoff 66: 355–361. DOI: 10.1007/s00107-008-0233-9
  • Kol Ş.H. & Sefil Y. 2011: The thermal conductivity of fir and beech wood heat treated at 170, 180, 190, 200, and 212°C. Journal of Applied Polymer Science 121(4): 2473–2480. DOI: 10.1002/app.33885
  • Korkut S., Aytin A., Taşdemír Ç. & Gurău L. 2013: The transverse thermal conductivity coefficients of Wild cherry wood heat-treated using the ThermoWood method. ProLigno 9(4): 649–683. Online ISSN 2069-7430.
  • MacLean J.D. 1941: Thermal conductivity of wood. Heating, piping & air conditioning 13(6): 380–391.
  • Maloney T.M. 1973: Bark boards from four west coast softwood species. Forest Products Journal 23(8): 30–38.
  • Mitzner R.C. 1973: Durability and maintenance of plywood overlaid with fibreglass reinforced plastic. American Plywood Association Laboratory Report No. 119 part 3
  • Mitsui K., Inagaki T. & Tsuchikawa S. 2008: Monitoring of hydroxyl groups in wood during heat treatment using NIR spectroscopy. Biomacromolecules, 9: 286–288. DOI: 10.1021/bm7008069
  • Moradpour P., Pirayesh H., Gerami M. & Jouybari I.R. 2018: Laminated strand lumber (LSL) reinforced by GFRP; mechanical and physical properties. Construction and Building Materials 158: 236–242. DOI: 10.1016/j.conbuildmat.2017.09.172
  • Murphey W.K. & Rishel L.E. 1969: Relative strength of boards made from bark of several species. Forest Products Journal 19(1): 52.
  • Nemli G. & Çolakoğlu G. 2005: Effects of mimosa bark usage on some properties of particleboard. Turkish Journal of Agriculture and Forestry 29: 227–230.
  • Osmannezhad S., Faezipour M. & Ebrahimi G. 2014: Effects of GFRP on bending strength of glulam made of poplar (Populus deltoides) and beech (Fagus orientalis). Construction and Building Materials 51: 34–39. DOI: 10.1016/j.conbuildmat.2013.10.035
  • Pásztory Z., Horváth N. & Börcsök Z. 2017a: Effect of heat treatment duration on the thermal conductivity of spruce and poplar wood. European Journal of Wood and Wood Products 75: 843–845. DOI: 10.1007/s00107-017-1170-2
  • Pásztory Z., Mohácsiné R.I. & Börcsök Z. 2017b: Investigation of thermal insulation panels made of black locust tree bark. Construction and Building Materials 147: 733–735. DOI: 10.1016/j.conbuildmat.2017.04.204
  • Pásztory Z. & Ronyecz I. 2013: The Thermal Insulation Capacity of Tree Bark. Acta Silvatica and Lignaria Hungarica 9: 111–117. DOI: 10.2478/aslh-2013-0009
  • Pavel C.C. & Blagoeva D.T. 2018: Competitive landscape of the EU’s insulation materials industry for energy-efficient buildings. PUBSY No. JRC108692 EUR 28816 EN, Publications Office of the European Union, Luxemburg
  • Pedieu R., Riedl B. & Pichette A. 2008: Physical and mechanical properties of panel based on outer bark particles of white birch: Mixed panels with wood particles versus wood fibers. Maderas. Ciencia y tecnología 10(3): 195–206. DOI: 10.4067/S0718-221X2008000300003
  • Pedieu R., Riedl B. & Pichette A. 2009: Properties of mixed particleboards based on white birch (Betula papyrifera) inner bark particles and reinforced with wood fibres. European Journal of Wood and Wood Products 67: 95–101. DOI: 10.1007/s00107-008-0297-6
  • Place T.A. & Maloney T.M. 1975: Thermal properties of dry wood-bark multilayer boards. Forest Products Journal 25(1): 33–39.
  • Place T.A. & Maloney T.M. 1977: Internal bond and moisture response properties of three-layer, wood-bark boards. Forest Products Journal 27(3): 50–54.
  • Ragland K.W., Aerts D.J. & Baker A.J. 1991: Properties of wood for combustion analysis. Bioresource Technology 37: 161–168.
  • Rowel R.M., Youngs R.L. 1981: Dimensional stabilization of wood in use. Research Note FPL-0243, Forest Products Laboratory, Forest Service, USDA
  • Schiavoni S., D’Alessandro F., Bianchi F. & Asdrubali F. 2016: Insulation materials for the building sector: A review and comparative analysis. Renewable and Sustainable Energy Reviews 62: 988–1011. DOI: 10.1016/j.rser.2016.05.045
  • Seborg R.M., Tarkow H. & Stamm A.J. 1953: Effect of heat upon the dimensional stabilization of wood. Journal of the Forest Products Research Society 3(3): 59–67.
  • Sekino N. & Yamaguchi K. 2010: Carbonizing binderless wood shaving insulation panels for better insulation and durability. Part 1: Relationship between thermal conductivity and carbonizing temperature. Proceedings of the International Convention of Society of Wood Science and Technology and United Nations Economic Commission for Europe – Timber Committee October 11–14, 2010, Geneva, Switzerland. Paper IW-3 pp. 8.
  • Stone J.E. & Scallan A.M. 1965: Effect of component removal upon the porous structure of the cell wall of wood. Journal of Polymer Science: Part C 11: 13–25.
  • Suleiman B.M., Larfeldt J., Leckner B. & Gustavson M. 1999: Thermal conductivity and diffusivity of wood. Wood Science and Technology 33: 465–473. DOI: 10.1007/s002260050130
  • Tenwolde A., McNatt J.D. & Krahn L. 1988: Thermal properties of wood and wood panel products for use in buildings. USDA Forest Sevice DOE/USDA-21697/1
  • Tjeerdsma B.F., Boonstra M., Pizzi A., Tekely P. & Militz H. 1998: Characterisation of thermally modified wood: Molecular reasons for wood performance improvement. Holz Als Roh-Und Werkstoff 56: 149–153. DOI: 10.1007/s001070050287
  • Tjeerdsma B.F. & Militz H 2005: Chemical changes in hydrothermal treated wood: FTIR analysis of combined hydrothermal and dry heat-treated wood. Holz Als Roh-Und Werkstoff 63: 102–111. DOI: 10.1007/s00107-004-0532-8
  • Veitmans K. & Grinfelds U. 2016: Wood fiber insulation material. Proceedings 22nd Annual International Scientific Conference „Research for Rural Development 2016” 18–20 May, 2016 Vol. 2: 91–98. ISSN 2255-923X
  • Volf M., Diviš J. & Havlíka F. 2015: Thermal, moisture and biological behavior of natural insulating materials. Energy Procedia 78: 1599–1604. DOI: 10.1016/j.egypro.2015.11.219
  • Wangaard F.F. 1964: Elastic deflection of wood-fibreglass composite beams. Forest Products Journal 14 (6):256–260.
  • Windeisen E., Strobel C. & Wegener G. 2007: Chemical changes during the production of thermo-treated beech wood. Wood Science and Technology 41: 523–536. DOI: 10.1007/s00226-007-0146-5
  • Yamauchi H., Pulido O.R., Ma L.F., Miura I. & Sasaki H. 1999: Processing and utilization of sugi (Cryptomeria japonica D. DON) barks – preparation and grading of fibers. European Journal of Wood and Wood Products 57: 150–151.
  • Yemele M.C.N., Blanchet P., Cloutier A. & Koubaa A. 2008: Effects of bark content and particle geometry on the physical and mechanical properties of particleboard made from black spruce and trembling aspen bark. Forest Products Journal 58(11): 48–56.
  • Yin Y., Berglund L. & Salmén L. 2011: Effect of steam treatment on the properties of wood cell walls. Biomacromolecules 12: 194–202. DOI: 10.1021/bm101144m
  • Zhou X., Zheng F., Li H. & Lu C. 2010: An environment-friendly thermal insulation material from cotton stalk fibers. Energy and Buildings 42: 1070–1074. DOI: 10.1016/j.enbuild.2010.01.020
  • Zolfagari A.; Behravesh A.H. & Shahi P. 2015: Comparison of mechanical properties of wood–plastic composites reinforced with continuous and noncontinuous glass fibers. Journal of Thermoplastic Composite Materials 28(6): 791–805. DOI: 10.1177/0892705713503676
  • Open Acces

    For non-commercial purposes, let others distribute and copy the article, and include in a collective work, as long as they cite the author(s) and the journal, and provided they do not alter or modify the article.

    Cite this article as:

    Börcsök, Z. & Pásztory, Z. (2020): Improving the properties of bark based insulation panels. Bulletin of Forestry Science, 10(1): 29-39. (in Hungarian) DOI: 10.17164/EK.2020.003

    Volume 10, Issue 1
    Pages: 29-39

    DOI: 10.17164/EK.2020.003

    First published:
    10 August 2020

    Related content

    2

    More articles
    by this authors

    2

    Related content in the Bulletin of Forestry Science*

    More articles by this authors in the Bulletin of Forestry Science

    * Automatically generated recommendations based on the occurrence of keywords given by authors in the titles and abstracts of other articles. For more detailed search please use the manual search.