Bulletin of Forestry Science / Volume 13 / Issue 1 / Pages 35-53
previous article | next article

The current state and potential of the common hornbeam (Carpinus betulus L.) in forestry and in wood industry

Fanni Fodor & Tamás Mertl


Correspondence: Fodor Fanni

Postal address: 9400 Sopron, Bajcsy-Zsilinszky u. 4.

e-mail: fodor.fanni[at]uni-sopron.hu


In present paper, an overview of common hornbeam was provided, which is a native wood species with many favorable characteristics and significant logging opportunities, however it is less utilized in the wood industry. Although its wood is not durable in natural form, it is one of the densest, hardest and most wear-resistant wood species in Europe. Due to its unfavorable properties, it is mostly used as firewood. Its areas of use indoors can be expanded with new utensils, interior panelling, and decorative elements. In addition, with various environmentally-friendly wood modification processes, a more durable and resistant wood material can be obtained, the color of which can be adjusted to the user’s needs by varying the process parameters. This material can be used for outdoor wood products, but also for architectural applications. Hornbeam is stably available in Hungary in medium-term and can provide opportunity for the production of durable wood products, if there is a manufacturer and effective demand for it within the effective transportation distance. At the end of this article, the findings were summarized with a Strength-Weakness-Opportunity-Threat Analysis.

Keywords: hornbeam, Carpinus betulus, yield forecast, wood science, wood modification

  • van Acker J. 2021: Opportunities and challenges for hardwood based engineered wood products. In: Németh R., Rademacher P., Hansmann C., Bak M. & Báder M. (eds.): Proceedings of the 9th Hardwood Conference Pt. II. Soproni Egyetem Kiadó, Sopron, 5–14.
  • Aranyos B. 2014: Magasnyomású vízsugár fafelszínt degradáló hatásának vizsgálata hőkezelt gyertyán faanyagokon. Szakdolgozat. Nyugat-magyarországi Egyetem, Sopron.
  • Ashrafi M.N., Far M.G., Kiani A.M., Dehghan M., Gholizadeh H. & Jelodari A. 2022: Investigating the physical properties of Carpinus species in three different regions of Iran. European Journal of Wood and Wood Products 80(1): 259–261. DOI: 10.1007/s00107-021-01759-2
  • Bak M., Németh R. & Horváth N. 2012: Wood modification at the University of West Hungary. In: Németh R. & Teischinger A. (eds.): The 5th Conference on Hardwood Research and Utilisation in Europe. Nyugat-magyarországi Egyetem Kiadó, Sopron, 135–143.
  • Balász I., Pešek O. & Bukovská P. 2020: Hardwood – Softwood Combination in Glued Laminated Timber Cross-Section. Transactions of VSB – Technical University of Ostrava Civil Engineering Series Section Building Structures & Structural Mechanics 20(1): 5–12. DOI: 10.35181/tces-2020-0002
  • Bari E ., Jamali A., Nazarnezhad N., Nicholas D.D., Humar M. & Najafian M. 2019: An innovative method for the chemical modification of Carpinus betulus wood: a methodology and approach study. Holzforschung. 73(9): 839–846. DOI: 10.1515/hf-2018-0242
  • Barnes H.M., Aro M.D. & Rowlen A. 2018: Decay of Thermally Modified Engineered Wood Products. Forest Products Journal 68(2):99–104. DOI: 10.13073/FPJ-D-17-00060
  • Béky A. 1970: A gyertyán helye erdőművelésünkben. Az erdő 19(2): 82–88
  • Boone R.S., Kozlik C.J., Bois P.J. & Wengert E.M. 1988: Dry kiln schedules for commercial woods: temperate and tropical. U.S. Department of Agriculture, Forest Service, Forest Products Laboratory, Madison, Report No.: FPLGTR-57. http://www.fs.usda.gov/treesearch/pubs/9635 (letöltés időpontja: 2023.01.23.)
  • Brunetti M., Nocetti M., Pizzo B., Aminti G., Cremonini C., Negro F., Zanuttini R., Romagnoli M. & Scarascia Mugnozza G. 2020: Structural products made of beech wood: quality assessment of the raw material. European Journal of Wood and Wood Products 78(5):961–970. DOI: 10.1007/s00107-020-01542-9
  • Csizmadia P. 2015: Hőkezelt és kezeletlen faanyagok kültéri kitettségi vizsgálatai. Szakdolgozat. Nyugat-magyarországi Egyetem, Sopron.
  • Dubois H., Verkasalo E. & Claessens H. 2020: Potential of Birch (Betula pendula Roth and B. pubescens Ehrh.) for Forestry and Forest-Based Industry Sector within the Changing Climatic and Socio-Economic Context of Western Europe. Forests 11(3):336. DOI: 10.3390/f11030336
  • FAO. 2020: Food and Agriculture Organization of the United Nations – Country Reports 2020. https://www.fao.org/forest-resources-assessment/fra-2020/country-reports/en/
  • Fodor F., Ábrahám J. & Németh R. 2018: Bonding acetylated hornbeam wood (Carpinus betulus L.). Pro Ligno. 14(4): 31–38.
  • Fodor F., Bak M., Bidló A., Bolodár-Varga B. & Németh R. 2022a: Biological Durability of Acetylated Hornbeam Wood with Soil Contact in Hungary. Forests 13(7): 1003. DOI: 10.3390/f13071003
  • Fodor F., Bak M. & Németh R. 2022b: Photostability of Oil-Coated and Stain-Coated Acetylated Hornbeam Wood against Natural Weather and Artificial Aging. Coatings 12(6): 817. DOI: 10.3390/coatings12060817
  • Fodor F., Lankveld C. & Németh R. 2017: Testing common hornbeam (Carpinus betulus L.) acetylated with the Accoya method under industrial conditions. iForest – Biogeosciences and Forestry 10(6): 948. DOI: 10.3832/ifor2359-010
  • Führer E. 2018: A klímaértékelés erdészeti vonatkozásai. Erdészettudományi Közlemények 8(1): 27–42. DOI: 10.17164/EK.2018.002
  • Führer E., Horváth L., Jagodics A., Machon A. & Szabados I. 2011: Application of a new aridity index in Hungarian forestry practice. Időjárás 115(3): 205–116.
  • Gálos B. & Führer E. 2018: A klíma erdészeti célú előrevetítése. Erdészettudományi Közlemények 8(1): 43–55. DOI: 10.17164/EK.2018.003
  • Ghalehno M.D. & Nazerian M. 2011: Changes in the physical and mechanical properties of Iranian hornbeam wood (Carpinus betulus) with heat treatment. European Journal of Scientific Research 51(4): 490–498.
  • Gunduz G. & Aydemir D. 2009: Some Physical Properties of Heat-Treated Hornbeam (Carpinus betulus L.) Wood. Drying Technology 27(5): 714–720. DOI: 10.1080/07373930902827700
  • Gunduz G., Korkut S., Aydemir D. & Bekar I. 2009: The density, compression strength and surface hardness of heat treated hornbeam (Carpinus betulus L.) wood. Maderas Ciencia y tecnología 11(1): 61–70. DOI: 10.4067/S0718-221X2009000100005
  • Horváth A.L. 2019: Erdei választékok, faárak. Egyetemi előadás. Soproni Egyetem, Sopron. http://emki.nyme.plugin.hu/images/TK%20jegyz%20Okt%20seg%20Vizsk%C3%A9rd/Haszn%20I.%20Erdei%20v%C3%A1laszt%C3%A9kok%20fa%C3%A1rak%20SoE.pdf?fbclid=IwAR0Jz-bHx1q2Zty11J564cBNsLo_cndc9yI0-MQdTi4pAL9bHoAcNGGCILY (Letöltés időpontja: 2023.01.23.)
  • Kiaei M. 2012: Effect of site and elevation on wood density and shrinkage and their relationships in Carpinus betulus. Forestry Studies in China 14(3): 229–234. DOI: 10.1007/s11632-012-0310-3
  • Kiaei M. & Abadian Z. 2018: Physical and Mechanical Properties of Hornbeam Wood from Dominant and Suppressed Trees. Drvna industrija 69(1): 63–69. DOI: 10.5552/drind.2018.1705
  • Kiaei M. & Paloj R.M. 2018: Surface roughness in relation to altitude of hornbeam wood. Madera y Bosques 24(1): e241964. DOI: 10.21829/myb.2018.241964
  • Knorz M. & van de Kuilen J.W.G. 2012: Development of a high-capacity engineered wood productLVL made of European Beech (Fagus sylvatica L.). In: WCTE 2012: World Conference on Timber Engineering. Auckland, New Zealand.
  • Kollár T. 2022: Új adatok a magyarországi gyertyánosok (Carpinus betulus) faterméséről. In: Czimber K. (ed.): Erdészeti Tudományos Konferencia kivonatok kötete. Soproni Egyetem, Sopron, 20.
  • von Lengefeld A.K. & Kies U. 2018: Teaming-up for the European Hardwoods Innovation Alliance (EHIA): Take your action! In: 8th Hardwood conference proceedings. Sopron: University of Sopron Press. p. 15–16.
  • Luedtke J., Amen C., van Ofen A. & Lehringer C. 2015: 1C-PUR-bonded hardwoods for engineered wood products: influence of selected processing parameters. European Journal of Wood and Wood Products. 73(2):167–178. DOI: 10.1007/s00107-014-0875-8
  • Mirzaei G., Mohebby B. & Ebrahimi G. 2017: Glulam beam made from hydrothermally treated poplar wood with reduced moisture induced stresses. Construction and Building Materials. 135:386–393. DOI: 10.1016/j.conbuildmat.2016.12.178
  • Mérlegbeszámolók (2001-2021): Beszámoló az erdősítésekről és a fakitermelésekről, OSAP adatgyűjtés. Állami Erdészeti Szolgálat 2001–2006, MGSZH Központ Erdészeti Igazgatóság 2007–2011, NÉBIH Erdészeti Igazgatóság 2012–2018, NFK Erdészeti Osztály 2019-2021, Budapest.
  • Molnár S., Ábrahám J., Csupor K., Horváth N., Komán S., Németh R. & Tolvaj L. 2010: Thermal modification of Hungarian hardwood material to improve the durability and the dimensional stability. Kutatási jelentés. OTKA 49314.
  • Molnár S. & Bariska M. 2002: Magyarország ipari fái. Szaktudás Kiadó Ház Zrt., Budapest.
  • Németh R., Ábrahám J. & Báder M. 2014: Effect of high temperature treatment on selected properties of beech, hornbeam and turkey oak wood. In: Sandberg D. & Vasiri M. (eds.): Book of Abstracts of Final Cost Action FP0904 Conference: “Recent Advances in the Field of TH and THM Wood Treatment”. Luleå University of Technology, Skellefteå, 52–53.
  • NFK. 2021: Erdeink egészségi állapota 2021-ben. Jelentés a 16x16 km-es EVH hálózat alapján. https://nfk.gov.hu/download.php?id_file=43393 (Letöltés időpontja: 2023.01.23.)
  • NFK. 2022: Fafaj(csoport) statisztikák (éves és idősoros adatok 2005-től) https://nfk.gov.hu/Magyarorszag_erdeivel_kapcsolatos_adatok_news_513 (Letöltés időpontja: 2023.01.23.)
  • OSAP 2021a: Nettó fakitermelés (OSAP 1257) mintavételezésből országos szintre becsült adatok. https://agrarstatisztika.kormany.hu/download/a/6b/f2000/Nett%C3%B3_fakitermel%C3%A9s_orsz%C3%A1gos_2021.xlsx (Letöltés időpontja: 2023.01.23.)
  • OSAP.2021b: Nettó fakitermelés (OSAP 1257) minőségjelentés 2021. https://agrarstatisztika.kormany.hu/akadalymentes/download/c/84/f2000/OSAP_1257_min%C5%91s%C3%A9gjelent%C3%A9s_2021.docx (Letöltés időpontja: 2023.01.23.)
  • Pinchevska O., Horbachova O., Spirochkin A., Sedliačik J. & Rohovskyi I. 2019: Properties of Hornbeam (Carpinus betulus) wood thermally treated under different conditions. Acta Facultatis Xylologiae Zvolen 61(2): 25–39. DOI: 10.17423/afx.2019.61.2.03
  • Puskás T. 2006: A hőkezelés (száraz termikus kezelés) hatása a bükk, a cser és a gyertyán faanyagának fizikai jellemzőire. Szakdolgozat. Nyugat-magyarországi Egyetem, Sopron.
  • Richter H.G. & Dallwitz M.J. 2019: Commercial timbers: descriptions, illustrations, identification, and information retrieval. https://www.delta-intkey.com/wood/en/www/betcabet.htm (Letöltés időpontja: 2023.01.23.)
  • Sedlar T., Sinković T., Perić I., Jarc A., Stojnić S. & Šefc B. 2019: Hardness of thermally modified beech wood and hornbeam wood. Šumarski list 143(9–10): 425–433. DOI: 10.31298/sl.143.9-10.4
  • Sikkema R., Caudullo G. & de Rigo D. 2016: Carpinus betulus in Europe: distribution, habitat, usage and threats. In: San-Miguel-Ayanz J., de Rigo D., Caudullo G., Houston Durrant T. & Mauri A. (eds.): European Atlas of Forest
  • Tree Species. Publications Office of the European Union, Luxemburg, 74–75. https://ies-ows.jrc.ec.europa.eu/efdac/download/Atlas/pdf/Carpinus_betulus.pdf (Letöltés időpontja: 2023.01.23.)
  • Sinković T., Govorčin S. & Sedlar T. 2011: Comparison of Physical Properties of Untreated and Heat Treated Beech and Hornbeam. Drvna industrija 62(4): 283–290. DOI: 10.5552/drind.2011.1118.
  • Solymos R. 1993: Improvement and silviculture of oaks in Hungary. Annales des sciences forestières. 50(6): 607–614. DOI: ffhal-00882871
  • Szalacsi Á., Veres S. & Király G. 2015: Adatok a síkvidéki gyertyános-tölgyesek erdőműveléséhez: lékes felújítóvágás alkalmazásának gyakorlati tapasztalatai és növényzeti hatásai a Szatmár-beregi síkon. Erdészettudományi Közlemények 5(1): 85–99. DOI: 10.17164/EK.2015.006
  • Tolvaj L., Persze L. & Láng E. 2013: Correlation between hue angle and lightness of wood species grown in Hungary. Wood research 58(1): 141–146.
  • Tumen I., Aydemir D., Gunduz G., Uner B. & Cetin H. 2010: Changes in the chemical structure of thermally treated wood. BioResources 5(3): 1936–1944. DOI: 10.15376/BIORES.5.3.1936–1944
  • Varol T., Cetin M., Ozel H.B., Sevik H. & Zeren Cetin I. 2022: The Effects of Climate Change Scenarios on Carpinus betulus and Carpinus orientalis in Europe. Water, Air, & Soil Pollution 233(2): 45. DOI: 10.1007/s11270-022-05516-w
  • Wagenführ R. 2007: Holzatlas. Fachbuchverlag, Leipzig.
  • Wang Z., Dong W., Zhou J. & Gong M. 2018: Effect of macro characteristics on rolling shear properties of fastgrowing poplar wood laminations. Wood Research 63(2):227–238.
  • Wei Y., Rao F., Yu Y., Huang Y. & Yu W. 2019: Fabrication and performance evaluation of a novel laminated veneer lumber (LVL) made from hybrid poplar. European Journal of Wood and Wood Products 77(3):381–391. DOI: 10.1007/s00107-019-01394-y
  • Župčić I., Mihulja G., Govorčin S., Bogner A. & Grbac I. 2009: Welding of thermally modified hornbeam. Drvna industrija 60(3): 161–166.
  • Open Acces

    For non-commercial purposes, let others distribute and copy the article, and include in a collective work, as long as they cite the author(s) and the journal, and provided they do not alter or modify the article.

    Cite this article as:

    Fodor, F. & Mertl, T. (2023): The current state and potential of the common hornbeam (Carpinus betulus L.) in forestry and in wood industry. Bulletin of Forestry Science, 13(1): 35-53. (in Hungarian) DOI: 10.17164/EK.2023.03

    Volume 13, Issue 1
    Pages: 35-53

    DOI: 10.17164/EK.2023.03

    First published:
    21 April 2023

    Related content


    More articles
    by this authors


    Related content in the Bulletin of Forestry Science*

    More articles by this authors in the Bulletin of Forestry Science

    * Automatically generated recommendations based on the occurrence of keywords given by authors in the titles and abstracts of other articles. For more detailed search please use the manual search.