Bulletin of Forestry Science / Volume 10 / Issue 1 / Pages 5-16
| next article

Allelic variation in candidate genes associated with wood properties of cultivated poplars

Klára Cseke, Attila Zoltán Köbölkuti, Attila Benke, Andrea Rumi, Mátyás Báder, Attila Borovics & Róbert Németh


Correspondence: Cseke Klára

Postal address: H-9600 Sárvár, Várkerület 30/A

e-mail: cseke.klara[at]erti.naik.hu


Poplars represent high economic value. The aim of the present study was to initiate a research methodology that at first identifies candidate genes encoding enzymes with wood property phenotypic traits, towards the aim of developing a genomics-based breeding technology. As a first step, primer pairs were designed on the coding region of 24 candidate genes. 55 primer pairs were tested with 47.27% success rate. In the next phase, eight enzymes were selected for further analysis on 23 genotypes containing seven different poplar species and 11 hybrids. One group of the analyzed enzymes is involved in the lignification process (COMT, CCoAOMT, SAMS), another group (Kt, ptk2, SKOR) holds a key function in K+-dependent xylogenesis, while two more enzymes (endo-1,4-b-xylanase, Araf-ase) have a role in determining microfibril angle. 13 different marker regions were successfully amplified, and 188 sequences were analyzed, altogether resulting in 90 SNPs. The number of polymorphic sites, nucleotide diversity, the number of insertions/deletions, the minimum number of recombination events and the linkage disequilibrium were calculated, while the character of SNPs and conserved DNA regions were identified as well. Potential application fields are discussed along with the presented results.

Keywords: SNP markers, Populus, wood property

  • Ache P., Fromm J. & Hedrich R. 2010: Potassium-dependent wood formation in poplar: Seasonal aspects and environmental limitations. Plant Biology 12(2): 259–267. DOI: 10.1111/j.1438-8677.2009.00282.x
  • Tribot A., Amer G., Alio M. A., de Baynast H., Delattre C., Pons A., Mathias J.-D., Callois J.-M., Vial C., Michaud P. & Dussap C.-G. 2019: Wood-lignin: Supply, extraction processes and use as bio-based material. European Polymer Journal 112: 228-240. DOI: 10.1016/j.eurpolymj.2019.01.007
  • Arend M., Stinzing A., Wind C., Langer K., Latz A., Ache P. & Hedrich R. 2005: Polar-localised poplar K+channel capable of controlling electrical properties of wood-forming cells. Planta 223(1): 140–148. DOI: 10.1007/s00425-005-0122-y
  • Báder M., Németh R. & Konnerth J. 2019: Micromechanical properties of longitudinally compressed wood. European Journal of Wood and Wood Products 77: 341–351. DOI: 10.1007/s00107-019-01392-0
  • Bak M. & Németh R. 2012: Changes in swelling properties and moisture uptake rate of oil-heat-treated poplar (Populus x euramericana cv. Pannonia) wood. BioResources 7(4): 5128-5137.
  • Barnett J.R. & Bonham V.A. 2004: Cellulose microfibril angle in the cell wall of wood fibres. Biological Reviews 79: 461–472.
  • Bradshaw H. D. & Stettler R. E. 1993: Molecular genetics of growth and development in Populus. In. Triploidy in hybrid poplars. Theoretical and Applied Genetics 86: 301–302.
  • Brunner A. M., Busov V. B. & Strauss S. H. 2004: Poplar genome sequence : functional genomics in an ecologically dominant plant species. Trends in Plant Science 9(1): 49–56. DOI: 10.1016/j.tplants.2003.11.006
  • Christensen J. H., Baucher M., O’Connell A., Van Montagu M. & Boerjan W. 2000: Control of lignin biosynthesis. Molecular biology of woody plants. Dordrecht, Springer: 227–228.
  • Davison B. H., Drescher S. R., Tuskan G. A., Davis M. F. & Nghiem N. P. 2006: Variation of S/G Ratio and Lignin Content in a Populus Family Influences the Release of Xylose by Dilute Acid Hydrolysis. Applied Biochemistry and Biotechnology 129-132: 427-435.
  • Donaldson L. 2008: Microfibril angle: Measurement, variation and relationships - A review. International Association of Wood Anatomists Journal 29: 345–386.
  • Dumolin S., Demesure B. & Petit R. J. 1995: Inheritance of chloroplast and mitochondrial genomes in pedunculate oak investigated with an efficient PCR method. Theoretical and Applied Genetics 91(8): 1253–1256. DOI: 10.1007/BF00220937
  • Evans R. & Ilic J. 2001: Rapid prediction of wood stiffness from microfibril angle and density. Forest Products Journal 51: 53–57.
  • Fromm J. 2010: Wood formation of trees in relation to potassium and calcium nutrition. Tree Physiology 30(9): 1140–1147. DOI: 10.1093/treephys/tpq024
  • Geisler-Lee J., Geisler M., Coutinho P. M., Segerman B., Nishikubo N., Takahashi J. & Sundberg B. 2006: Poplar carbohydrate-active enzymes. Gene identification and expression analyses. Plant Physiology 140(3): 946–962. DOI: 10.1104/pp.105.072652
  • Gencsi L. & Vancsura R. 1992: Dendrológia – Erdészeti Növénytan II. Mezőgazda Kiadó, Budapest: 29, 330.
  • Glasser W.G. 2019: About Making Lignin Great Again – Some Lessons From the Past. Frontiers in Chemistry 7: 565. DOI: 10.3389/fchem.2019.00565
  • González-Martínez S. C., Krutovsky K. V. & Neale D. B. 2006: Forest-tree population genomics and adaptive evolution. New Phytologist 170: 227-238.
  • Hall T. A. 1999: BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symposium Series 41 (41): 95–98.
  • Halpin C. 2004: Re-designing lignin for industry and agriculture. Biotechnology and Genetic Engineering 21(1): 229–248. DOI: 10.1080/02648725.2004.10648057
  • Henry I. M., Zinkgraf M. S., Groover A. T. & Comai L. 2015: A system for dosage-based functional genomics in poplar. The Plant Cell 27(9): 2370–2383. DOI: 10.1105/tpc.15.00349
  • Horváth N., Bak M. & Németh R. 2012: Modification of poplar wood by different heat treatments. Poster presentation, 7. Thermowood Workshop, Drezda, 2012.04.26-27.
  • Isabel N., Lamothe M. & Thompson S. L. 2013: A second-generation diagnostic single nucleotide polymorphism (SNP)-based assay, optimized to distinguish among eight poplar (Populus L.) species and their early hybrids. Tree Genetics and Genomes 9(2): 621–626. DOI: 10.1007/s11295-012-0569-5
  • Komán Sz. 2012: Nemesnyár-fajták korszerű ipari és energetikai hasznosítását befolyásoló faanatómiai és fizikai jellemzők. Doktori értekezés, Nyugat-Magyarországi Egyetem, Sopron, 85 p.
  • Köbölkuti Z., Cseke K., Benke A., Báder M., Borovics A. & Németh R. 2019: Allelic variation in candidate genes associated with wood properties of cultivated poplars (Populus), Biologia Futura 70(4): 286-294.
  • Lampugnani E.R., Khan G.A., Somssich M. & Persson S. 2018: Building a plant cell wall at a glance. Journal of Cell Science 131(2), jcs207373. DOI: 10.1242/jcs.207373
  • Langer K., Ache P., Geiger D. et al. 2002: Poplar potassium transporters capable of controlling K+ homeostasis and K+-dependent xylogenesis. The Plant Journal 32(6): 997-1009. DOI: 10.1046/j.1365-313x.2002.01487.x
  • Li L., Lu S. & Chiang V. 2006: A genomic and molecular view of wood formation. Critical Reviews in Plant Sciences 25(3): 215–233. DOI: 10.1080/07352680600611519
  • McFarlane H.E., Doring A. & Persson S. 2014: The cell biology of cellulose synthesis. The Annual Review of Plant Biology 65: 69–94.
  • Meents M.J., Watanabe Y. & Samuels A.L. 2018: The cell biology of secondary cell wall biosynthesis. Annals of Botany 121: 1107–1125.
  • Mellerowicz E. J. & Sundberg B. 2008: Wood cell walls: biosynthesis, developmental dynamics and their implications for wood properties. Current Opinion in Plant Biology 11(3): 293–300. DOI: 10.1016/j.pbi.2008.03.003
  • Mizrachi E., Verbeke L., Christie N. et al. 2017: Network-based integration of systems genetics data reveals pathways associated with lignocellulosic biomass accumulation and processing. Proceedings of the National Academy of Sciences 114. 201620119. DOI: 10.1073/pnas.1620119114
  • Mutwil M., Debolt S. & Persson S. 2008: Cellulose synthesis: a complex. Current Opinion in Plant Biology 11(3): 252–257. DOI: 10.1016/j.pbi.2008.03.007
  • Neale D. B. & Kremer A. 2011: Forest tree genomics: growing resources and applications. Nature Reviews Genetics 12: 111-122.
  • Oakley R. V., Wang Y. S., Ramakrishna W., Harding S. A. & Tsai C. J. 2007: Differential expansion and expression of alfa - and beta-tubulin gene families in Populus. Plant Physiology 145(3): 961–973. DOI: 10.1104/pp.107.107086
  • Olson M. S., Robertson A. L., Takebayashi N., Silim S., Schroeder W. R. & Tiffin P. 2010: Nucleotide diversity and linkage disequilibrium in balsam poplar (Populus balsamifera). New Phytologist 186: 526–536.
  • Plomion C., Leprovost G. & Stokes A. 2001: Wood formation in trees. Plant Physiology 127(12): 1513–1523.
  • Rademacher P., Báder M., Németh R., Rousek R., Paril P., Baar J., Hornicek S., Dejmal A., Domeny J., Kudela J., Kutnar A., Neyses B. & Sandberg D. 2017: European co-operation in wood research – from native wood to engineered materials. Part 2: densification modification in product development. In: Gurau L., Campean M., Ispas M. (eds): Proceedings of the International Conference Wood Science and Engineering in the Third Millenium (ICWSE 2017). Transilvania University, Brasov, Romania, 02-04.11.2017.: 469-478. (ISSN 1843-2689).
  • Song J., Chen C., Zhu S. et al. 2018: Processing bulk natural wood into a high-performance structural material. Nature 554: 224–228. DOI: 10.1038/nature25476
  • Takab, K., Takeuchi M., Sato T., Ito M. & Fujita M. 2001: lmmunocytochemical localization of enzymes involved in lignification of the cell wall. The Journal of Plant Research 114: 509–515. DOI: 10.1007/PL00014018
  • Tenney A. E., Wu J. Q., Langton L., Klueh P., Quatrano R. & Brent M. R. 2007: A tale of two templates: Automatically resolving double traces has many applications, including efficient PCR-based elucidation of alternative splices. Genome Research 17(2): 212–218. DOI: 10.1101/gr.5661407
  • Vander Mijnsbrugge K., Meyermans H., Van Montagu M., Bauw G. & Boerjan W. 2000: Wood formation in poplar: identification, characterization, and seasonal variation of xylem proteins. Planta 210(4): 589–598. DOI: 10.1007/s004250050048
  • Wright S. I. & Andolfatto P. 2008: The impact of natural selection on the genome: emerging patterns in Drosophila and Arabidopsis. The Annual Review of Ecology, Evolution, and Systematics 39: 193–213. DOI: 10.1146/annurev.ecolsys.39.110707.173342
  • Zhong R. & Ye Z. H. 2007: Regulation of cell wall biosynthesis. Current Opinion in Plant Biology 10(6): 564–572. DOI: 10.1016/j.pbi.2007.09.001
  • Open Acces

    For non-commercial purposes, let others distribute and copy the article, and include in a collective work, as long as they cite the author(s) and the journal, and provided they do not alter or modify the article.

    Cite this article as:

    Cseke, K., Köbölkuti, Z. A., Benke, A., Rumi, A., Báder, M., Borovics, A. & Németh, R. (2020): Allelic variation in candidate genes associated with wood properties of cultivated poplars. Bulletin of Forestry Science, 10(1): 5-16. (in Hungarian) DOI: 10.17164/EK.2020.001

    Volume 10, Issue 1
    Pages: 5-16

    DOI: 10.17164/EK.2020.001

    First published:
    8 July 2020

    Related content


    More articles
    by this authors


    Related content in the Bulletin of Forestry Science*

  • Benke, A., Köbölkuti, Z. A., Cseke, K., Borovics, A. & Tóth, E. Gy. (2022): Identification of SNP markers responsible for drought tolerance in sessile oak populations: results of basic research for sustainable oak management. Bulletin of Forestry Science, 12(2): 77-90.
  • Szabó, A., Gribovszki, Z., Bolla, B., Balog, K., Csáfordi, P. & Tóth, T. (2019): Effect of Robinia pseudoacacia, Populus x. euramericana, and Quercus robur plantations on groundwater and iontransport at the northern hungarian plain. Bulletin of Forestry Science, 9(2): 87-97.
  • Heilig, D., Heil, B. & Kovács, G. (2018): Effects of spacing control on dendromass yield in short rotation hybrid poplar plantation. Bulletin of Forestry Science, 8(2): 51-59.
  • Horváth, A. & Mátyás, Cs. (2014): Estimation of increment decline caused by climate change, based on data of a beech provenance trial. Bulletin of Forestry Science, 4(2): 91-99.
  • Rédei, K., Rásó, J., Keserű, Zs. & Juhász, J. (2014): Yield of black locust (Robinia pseudoacacia) stands mixed with grey poplar (Populus × canescens): a case study. Bulletin of Forestry Science, 4(1): 63-72.
  • Keserű, Zs. & Rédei, K. (2012): Tending operation models for Leuce-poplars under sandy soil conditions. Bulletin of Forestry Science, 2(1): 61-71.
  • Cseke, K., Benke, A. & Borovics, A. (2011): Identification of poplar genotypes based on DNA fingerprinting method. Bulletin of Forestry Science, 1(1): 107-114.
  • Cseke, K., Bordács, S. & Borovics, A. (2011): Taxonomic and genetic study of a mixed oak stand. Bulletin of Forestry Science, 1(1): 95-105.
  • Benke, A., Cseke, K. & Borovics, A. (2011): Population genetic inventory of transdanubian Leuce poplars applying RAPD and cpDNA markers. Bulletin of Forestry Science, 1(1): 83-93.
  • More articles by this authors in the Bulletin of Forestry Science

    * Automatically generated recommendations based on the occurrence of keywords given by authors in the titles and abstracts of other articles. For more detailed search please use the manual search.