Bulletin of Forestry Science / Volume 14 / Issue 1 / Pages 3-4
previous article | next article

Predicting carbon balance in the hungarian forestry and wood industry sector via the forest industry carbon model

Attila Borovics, Éva Király & Péter Kottek

Correspondence

Correspondence: Király Éva

Postal address: 9600 Sárvár, Várkerület 30/A.

e-mail: kiraly.eva.ilona[at]uni-sopron.hu

Abstract

As forest-based climate change mitigation gains greater importance within international climate policy, understanding the mechanisms influencing the carbon offsetting capacity of the sector becomes increasingly important. Our study evaluates the climate benefits of contrasting forest management strategies: one focuses on reducing harvest and expanding forest carbon stocks, while the other aims to increase harvest to enhance carbon uptake, wood product carbon pools, and substitution effects. We analyse the carbon balance of the Hungarian forest industry under three scenarios: the business as usual (BAU) scenario with no changes in current harvest and afforestation levels, the extensification scenario with reduced harvest and afforestation levels, and the intensification scenario involving increased afforestation, improved wood assortments, and gradually increasing timber extraction which is still meeting sustainability criteria. We introduce the Forest Industry Carbon Model (FICM), a novel carbon accounting tool encompassing various carbon pools including forest biomass, dead organic matter, soil, harvested wood products, and emissions avoided through product and energy substitution. Our findings indicate that the intensification scenario performs the highest net removals and optimized product and energy substitution effects. By 2050, the net carbon balance of the forest industry will reach –8,447 kt CO2 eq in the BAU scenario, –7,011 kt CO2 eq in the extensification scenario and –22,135 kt CO2 eq in the intensification scenario. Although substitution effects are not accounted for under the land-use, land-use change, and forestry (LULUCF) sector in Greenhouse Gas Inventories, emission reductions in the industry and energy sectors positively influence the national carbon balance. Our projections reveal that Hungary can meet the 2030 LULUCF greenhouse gas removal target set by EU legislation under the intensification scenario, necessitating significant innovation within the wood sector. In comparison, forest non-utilization proves to be a short-term solution, with its favourable effects diminishing by 2050 and leading to additional emissions as compared to the BAU scenario.
This article is based on the original publication by Borovics et al. 2024 (Projection of the Carbon Balance of the Hungarian Forestry and Wood Industry Sector Using the Forest Industry Carbon Model).

Keywords: CO2, HWP, forest management scenarios, climate change mitigation, product substitution, energy substitution

  • Borovics A., Király É. & Kottek P. 2024: Projection of the Carbon Balance of the Hungarian Forestry and Wood Industry Sector Using the Forest Industry Carbon Model. Forests 15(4):600. DOI: 10.3390/f15040600
  • Borovics A. & Király É. 2023a: Klímamitigáció és alkalmazkodás a magyar erdőiparban. Erdészeti Lapok 158: (1): 5-9. full text
  • Borovics A. & Király É. 2023b: The Challenge of Mobilizing the Unused Wood Stock Reserve to Foster a Sustainable and Prosperous Hungarian Forest Industry, Chemical Engineering Transactions 107: 637-642. DOI: 10.3303/CET23107107
  • Borovics A., Mertl T., Király É. & Kottek P. 2023: Estimation of the Overmature Wood Stock and the Projection of the Maximum Wood Mobilization Potential up to 2100 in Hungary. Forests 14(8):1516. DOI: 10.3390/f14081516
  • Borovics A. 2022: ErdőLab: A Soproni Egyetem Erdészeti és Faipari Projektje: Fókuszban az Éghajlatváltozás Mérséklése; Erdészeti Lapok 157(4): 114–115. full text
  • Borovics A. & Mátyás Cs. 2013: Decline of genetic diversity of sessile oak at the re-tracting (xeric) limits. Annals of Forest Science 70: 835–844. DOI: 10.1007/s13595-013-0324-6
  • COM(2021) 572: European Commission. New EU forest strategy for 2030. COM. (2021) 572 final. Communication from the commission to the European parliament, the council, the European Economic and social committee and the committee of the regions. 2021. https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A52021DC0572
  • COM(2021) 699: European Commission. EU soil strategy for 2030 – Reaping the ben-efits of healthy soils people, food, nature and climate. COM(2021) 699 final. Communica-tion from the commission to the European parliament, the council, the European economic and social committee and the committee of the regions. 2021. https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A52021DC0699
  • COM(2021) 800: EC. Communication from the commission to the European parlia-ment and the council. Sustainable carbon cycles. COM(2021) 800 final. 2021.
  • COM(2022) 304: European Commission. Proposal for a regulation of the European parliament and of the council on na-ture restoration. COM(2022) 304 final. 2022. https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=COM:2022:304:FIN
  • COM(2022) 672: European Commission. Proposal for a member of the European par-liament and the council establish-ing a union certification framework for carbon removals. COM(2022) 672 final. 2022. https://eur-lex.europa.eu/legal-content/EN/HIS/?uri=CELEX:52022PC0672
  • EU/2018/841: Regulation (EU) 2018/841: of the European Parliament and of the Council of 30 May 2018 on the inclusion of greenhouse gas emissions and removals from land use, land use change and forestry in the 2030 climate and energy frame-work, and amending Regulation (EU) No 525/2013 and Decision No 529/2013/EU (Text with EEA relevance) https://eur-lex.europa.eu/eli/reg/2018/841/oj
  • EU/2021/1119: European Climate Law. Regulation (EU) 2021/1119 of the European parliament and of the council of 30 June 2021 establishing the framework for achieving climate neutrality and amending regulations (EC) no 401/2009 and (EU) 2018/1999 (‘Eu-ropean Climate Law’). PE/27/2021/REV/1. http://data.europa.eu/eli/reg/2021/1119/oj
  • Európai Bizottság 2022: EU forests – new EU framework for forest monitoring and strategic plans. 2022. https://ec.europa.eu/info/law/better-regulation/have-your-say/initiatives/13396-EU-forests-new-EU-Framework-forForest-Monitoring-and-Strategic-Plans_en
  • Európai Bizottság 2023: Soil Health. 2023. https://environment.ec.europa.eu/topics/soil-and-land/soil-health_en
  • Fankhauser S., Smith S., Allen M., Axelsson K., Hale T., Hepburn C. et al.2022: The meaning of net zero and how to get it right. Nature Climate Change 12: 15–21. DOI: 10.1038/s41558-021-01245-w.
  • Fiorese G. & Guariso G. 2013: Modelling the role of forests in a regional carbon mitigation plan, Renewable Energy 52: 175-182. ISSN 0960-1481, DOI: 10.1016/j.renene.2012.09.060
  • Forest Act of Hungary 2024: https://net.jogtar.hu/jogszabaly?docid=a0900037.tv
  • Friedlingstein P., Jones M.W., O’Sullivan M., Andrew R.M., Hauck J., Peters G.P. et al. 2019: Global carbon budget 2019. Earth System Science Data 11(4): 1783–1838. DOI: 10.5194/essd-11-1783-2019
  • Grassi G., House J., Dentener F., Federici S., den Elzen M. & Penman J. 2017: The key role of forests in meeting climate targets requires science for credible mitigation. Nature Climate Change 7(3): 220–226. DOI: 10.1038/nclimate3227
  • Heinonen T., Pukkala T., Mehtätalo L., Asikainen A., Kangas J. & Peltola H. 2017: Scenario analyses for the effects of harvesting intensity on development of forest resources, timber supply, carbon balance and biodiversity of Finnish forestry, Forest Policy and Economics 80: 80-98. DOI: 10.1016/j.forpol.2017.03.011
  • Hennigar C.R.H.R. & MacLean D.A.M.A. 2010: Spruce budworm and management effects on forest and wood product carbon for an intensively managed forest. Canadian Journal of Forest Research DOI: 10.1139/X10-104
  • Hurmekoski E., Kilpeläinen A. & Seppälä J. 2022: Climate-Change Mitigation in the Forest-Based Sector: A Holistic View. Chap-ter 8 In: Hetemäki L. et al. (eds.): Forest Bioeconomy and Climate Change, Managing Forest Ecosystems 42 DOI: 10.1007/978-3-030-99206-4_8
  • Illés G. & Móricz N. 2022: Climate envelope analyses suggests significant rear-rangements in the distribution ranges of Central European tree species. Annals of Forest Science 79: 35. DOI: 10.1186/s13595-022-01154-8
  • IPCC 2006: IPCC Guidelines for national greenhouse gas inventories, prepared by the national greenhouse gas inventories programme. Eggleston H.S., Buendia L., Miwa K., Ngara T. and Tanabe K. (eds).
  • IPCC 2013: Revised supplementary methods and good practice guidance arising from the Kyoto protocol. Hiraishi, T., Krug, T., Tanabe, K., Srivastava, N., Baasansuren, J., Fukuda, M. and Troxler, T.G. (eds). Pp. 268.
  • IPCC 2019: Refinement to the 2006 IPCC guidelines for national greenhouse gas inventories. Calvo Buendia, E., Tanabe, K., Kranjc, A.; Baasansuren, J.; Fukuda, M.; Ngarize, S.; Osako, A.; Pyrozhenko, Y.; Shermanau, P. and Federici, S. (eds).
  • Király É., Börcsök Z., Kocsis Z., Németh G., Polgár A. & Borovics A. 2024: Climate change mitigation through carbon storage and product substitution in the Hungarian wood industry. Wood Research 69(1): 72-86. DOI: 10.37763/wr.1336-4561/69.1.7286
  • Király É., Kis-Kovács G., Börcsök Z., Kocsis Z., Németh G., Polgár A. & Borovics A. 2023: Modelling Carbon Storage Dynamics of Wood Products with the HWP-RIAL Model—Projection of Particleboard End-of-Life Emissions under Different Climate Mitigation Measures. Sustainability 15(7): 6322. DOI: 10.3390/su15076322
  • Korosuo A., Pilli R., Abad Viñas R. et al. 2023: The role of forests in the EU climate policy: are we on the right track? Carbon Balance and Management 18: 15. DOI: 10.1186/s13021-023-00234-0
  • Kottek P. 2023: Hosszútávú erdőállomány prognózisok. PhD Értekezés. 142 p. Roth Gyula Erdészeti és Vadgazdálkodási Tudományok Doktori Iskola, Soproni Egyetem. Sopron. URL
  • Kottek P., Király É., Mertl T. & Borovics A. 2023a: Trends of Forest Harvesting Ages by Ownership and Function and the Effects of the Recent Changes of the Forest Law in Hungary. Forests 14(4):679. DOI: 10.3390/f14040679
  • Kottek P., Király É., Mertl T. & Borovics A. 2023b: The Re-parametrization of the DAS Model Based on 2016-2021 Data of the National Forestry Database: New Results on Cutting Age Distributions. Acta Silvatica & Lignaria Hungarica 19(2): 61–74. DOI: 10.37045/aslh-2023-0005 full text
  • Köhl M. & Martes L. M. 2023: Forests: A passive CO2 sink or an active CO2 pump? Forest Policy and Economics 155(10): 103040. DOI: 10.1016/j.forpol.2023.103040
  • Leskinen P., Cardellini G., González-García S., Hurmekoski E., Sathre R., Seppälä J., Smyth C., Stern T. & Verkerk P.J. 2018: Substitution effects of wood-based products in climate change mitigation. From Science to Policy 7. European Forest Institute. pp. 28.
  • Levin K., Rich D., Ross K., Fransen T. & Elliott C. 2020: Designing and Communicating Net-Zero Targets. World Re-sources Institute. Designing and communicating net-zero tar-gets (apo.org.au).
  • Lipiäinen S., Sermyagina E., Kuparinen K. & Vakkilainen E. 2022: Future of forest in-dustry in carbon-neutral reality: Finnish and Swedish visions, Energy Reports 8: 2588-2600. DOI: 10.1016/j.egyr.2022.01.191
  • MacLean D., Porter K., Quiring D. & Hennigar C. 2007: Optimized harvest planning under alternative foli-ageprotection scenarios to reduce volume losses to spruce budworm. Canadian Journal of Forest Research 37(10): 1755–1769. DOI: 10.1139/X07-001
  • Martes L. & Köhl M. 2022: Improving the Contribution of Forests to Carbon Neutrality under Different Policies—A Case Study from the Hamburg Metropolitan Area. Sustainability 14(4): 2088. DOI: 10.3390/su14042088
  • Mátyás Cs., Berki I., Czúcz B., Gálos B., Móricz N. & Rasztovits E. 2010: Future of Beech in Southeast Europe from the Perspective of Evolutionary Ecology. Acta Silvatica et Lignaria Hungarica 6(1): 91–110. full text
  • Messier C., Bauhus J., Doyon F., Maure F., Sousa-Silva R., Nolet P., Mina M., Aquilué N., Fortin M.J. & Puettmann K. 2019: The functional complex network approach to foster forest resilience to global changes. Forest Ecosystems 6: 21. DOI: 10.1186/s40663-019-0166-2
  • Mina M., Messier C., Duveneck M., Fortin M.J. & Aquilué N. 2021: Network analysis can guide resilience-based management in forest landscapes under global change. Ecological Applications 31(1): e2221. DOI: 10.1002/eap.2221
  • Moreau L., Thiffault E., Cyr D., Boulanger Y. & Beauregard R. 2022: How can the forest sector mitigate climate change in a changing climate? Case studies of boreal and northern temperate forests in eastern Canada. Forest Ecosystems 9: 100026. DOI: 10.1016/j.fecs.2022.100026
  • NIR 2023: National Inventory Report for 1985–2021. Hungary. Hungarian Meteorological Service: Budapest, Hungary.
  • OKIR 2024: Országos Környezetvédelmi Információs Rendszer http://web.okir.hu/en/
  • OSAP 2023: https://agrarstatisztika.kormany.hu/erdogazdalkodas2
  • Pukkala T. 2014: Does biofuel harvesting and continuous cover management increase carbon sequestration? Forest Policy and Economics 43(6): 41-50. DOI: 10.1016/j.forpol.2014.03.004
  • Rogelj J., Geden O., Cowie A. & Reisinger A. 2021: Three ways to improve net-zero emissions targets. Nature 591: 365–368. DOI: 10.1038/d41586-021-00662-3
  • Tobisch T. & Kottek P. 2013: Forestry-Related Databases of the Hungarian Forestry Directorate, Version 1.1; Hungarian Forestry Directorate: Budapest, Hungary.
  • Open Acces

    For non-commercial purposes, let others distribute and copy the article, and include in a collective work, as long as they cite the author(s) and the journal, and provided they do not alter or modify the article.

    Cite this article as:

    Borovics, A., Király, É. & Kottek, P. (2024): Predicting carbon balance in the hungarian forestry and wood industry sector via the forest industry carbon model. Bulletin of Forestry Science, 14(1): 3-4. (in Hungarian) DOI: 10.17164/EK.2024.02

    Volume 14, Issue 1
    Pages: 3-4

    DOI: 10.17164/EK.2024.02

    First published:
    16 September 2024

    Related content

    2

    More articles
    by this authors

    14

    Related content in the Bulletin of Forestry Science*

    More articles by this authors in the Bulletin of Forestry Science

  • Benke, A., Cseke, K. & Borovics, A. (2011): Population genetic inventory of transdanubian Leuce poplars applying RAPD and cpDNA markers. Bulletin of Forestry Science, 1(1): 83-93.
  • Cseke, K., Bordács, S. & Borovics, A. (2011): Taxonomic and genetic study of a mixed oak stand. Bulletin of Forestry Science, 1(1): 95-105.
  • Cseke, K., Benke, A. & Borovics, A. (2011): Identification of poplar genotypes based on DNA fingerprinting method. Bulletin of Forestry Science, 1(1): 107-114.
  • Bordács, S., Nagy, L., Pintér, B., Bach, I., Borovics, A., Kottek, P., Szepesi, A., Fekete, Z., Wisnovszky, K. & Mátyás, Cs. (2013): State of Hungary’s forest genetic resources, 2010-2011. Bulletin of Forestry Science, 3(1): 21-37.
  • Cseke, K., Jobb, Sz., Koltay, A. & Borovics, A. (2014): The genetic pattern of oak decline. Bulletin of Forestry Science, 4(2): 135-147.
  • Mátyás, Cs. & Borovics, A. (2014): "Agrárklíma". Bulletin of Forestry Science, 4(2): 7-8.
  • Borovics, A., Illés, G., Juhász, J., Móricz, N., Rasztovits, E., Nimmerfroh-Pletscher, B., Unghváry, F., Pintér, T., Pödör, Z. & Jereb, L. (2018): The necessity and steps of establishing a forestry climate centre. Bulletin of Forestry Science, 8(2): 5-8.
  • Cseke, K., Köbölkuti, Z. A., Benke, A., Rumi, A., Báder, M., Borovics, A. & Németh, R. (2020): Allelic variation in candidate genes associated with wood properties of cultivated poplars. Bulletin of Forestry Science, 10(1): 5-16.
  • Kollár, T. & Borovics, A. (2021): The updated methodological directives of data processing and maintainance of the hungarian long term forestry experimental network, and its most important results. Bulletin of Forestry Science, 11(2): 95-114.
  • Kocsis, Z., Németh, G., Börcsök, Z., Polgár, A., Király, É., Kóczán, Zs. & Borovics, A. (2022): Specifying logistics and energy consumption conversion factors related to the carbon footprint analysis of the wood industry processes. Bulletin of Forestry Science, 12(1): 57-73.
  • Benke, A., Köbölkuti, Z. A., Cseke, K., Borovics, A. & Tóth, E. Gy. (2022): Identification of SNP markers responsible for drought tolerance in sessile oak populations: results of basic research for sustainable oak management. Bulletin of Forestry Science, 12(2): 77-90.
  • Bidló, A., Szűcs, P., Horváth, A., Király, É., Németh, E. & Somogyi, Z. (2014): The effect of afforestations on the carbon stock of soil in Transdanubian Region (Hungary). Bulletin of Forestry Science, 4(2): 121-133.
  • Kottek, P. & Király, É. (2019): Climate change can be detected in the national forestry database. Bulletin of Forestry Science, 9(1): 7-18.
  • Rozovits, F. P., Magyar, Zs., Kottek, P. & Bordács, S. (2019): Modeling pollen capacity of forest areas based on tree species and pollen data. Bulletin of Forestry Science, 9(1): 19-33.
  • * Automatically generated recommendations based on the occurrence of keywords given by authors in the titles and abstracts of other articles. For more detailed search please use the manual search.