Bulletin of Forestry Science / Volume 4 / Issue 2 / Pages 135-147
previous article | next article

The genetic pattern of oak decline

Klára Cseke, Szilvia Jobb, András Koltay & Attila Borovics

Correspondence

Correspondence: Borovics Attila

Postal address: H-9600 Sárvár, Várkerület utca 30/a.

e-mail: borovicsa[at]erti.hu

Abstract

We have analysed the genetic pattern of oak decline through the comparison of subpopulations composed viable and declined trees growing close to each other on various stands. The applied sampling method excluded most of the site effects influencing viability. For the genetic investigation 6 nuclear microsatellite loci (ZAG1/5, ZAG96, ZAG110, ZAG9, ZAG11, ZAG112) and 7 isoenzyme loci (IDH_B, PGI_B, AAP_A, AAT_B, ADH_A, SKDH_A, PGM_B) were applied. The genetic diversity of the analysed subpopulations were evaluated by different indices, such as number of alleles, effective number of alleles, Shannon diversity index, number of private allele, expected- and observed heterozygosity, fixation index. The different tendency of results regarding isoenzyme markers in case of pedunculate and sessile oaks was a conspicuous speciality of the study. Higher allele diversity was detected in the declined pedunculate oak subpopulation, while in case of the sessile oaks the viable subpopulation showed higher values. A very similar tendency could be revealed with the calculation of fixation index based on the heterozygosity values. In case of the microsatellite markers the outstanding allelic diversity of the viable pedunculate oak subpopulation was remarkable. Based on the genetic distance among the analysed subgroups the two oak species compose two distinct clusters, and also the viable and declined subpopulations separate within the two main clusters.

Keywords: pedunculate oak, sessile oak, oak decline, microsatellite analysis, isoenzyme analysis, genetic structure

  • Berki I. 1995: Éghajlatunk változása és a hazai tölgypusztulás. In: Tar K.; Berki I. és Kiss Gy. (eds): Erdő és Klíma Konferencia. Noszvaj, 1994.06.01.–1994.06.03. KLTE, 217–221.
  • Bohár Gy. 1995: Krónikus és akut stresszállapot, valamint a másodlagos károsítók és kórokozók szerepe a kocsányos- és kocsánytalan tölgy, valamint a cser pusztulásában. In: Tar K.; Berki I. és Kiss Gy. (eds): Erdő és Klíma Konferencia. Noszvaj, 1994.06.01.–1994.06.03. KLTE, 222–229.
  • Borovics, A. and Mátyás, Cs. 2013: Decline of genetic diversity of sessile oak at the retracting (xeric) limits. Annals of Forest Science, 70: 835–844. DOI: 10.1007/s13595-013-0324-6
  • Coart, E.; Lamote, V.; De Loose, M.; Van Bockstaele, E.; Lootens, P. and Roldán-Ruiz, I. 2002: AFLP markers demonstrate local genetic differentiation between two indigenous oak species [Quercus robur L. and Quercus petraea (Matt.) Liebl.] in Flemish populations. Theoretical and Applied Genetics, 105: 431–439. DOI: 10.1007/s00122-002-0920-6
  • Curtu, A.L.; Gailing, O.; Leinemann, L. and Finkeldey, R. 2006: Genetic Variation and Differentiation Within a Natural Community of Five Oak Species (Quercus spp.). Plant Biology 9: 116–126. DOI: 10.1055/s-2006-924542
  • Csóka Gy. 1992: A hazai kocsánytalantölgy-pusztulás menete 1983-tól napjainkig. Erdészeti Lapok, 127: 313–314. full text
  • Csóka Gy.; Koltay A.; Hirka A. és Janik G. 2007: Az aszályosság hatása kocsánytalan tölgyeseink és bükköseink egészségi állapotára. In: Mátyás Cs. és Vig P. (eds): Erdő és klíma V. kötet, Sopron, 229–239.
  • Gömöry, D. 2000: Gene coding for a non-specific NAD–dependent dehydrogenase shows a strong differentiation between Quercus robur and Quercus petraea. For. Genet., 7: 167–170.
  • Gömöry, D.; Yakovlev, I.; Zhelev, P.; Jedináková, J. and Paule, L. 2001: Genetic differentiation of oak populations within the Quercus robur/Quercus petraea complex in central and eastern Europe. Heredity, 86: 557–563. DOI: 10.1046/j.1365-2540.2001.00874.x
  • Hertel, H. and Degen, B. 2000: Distinguishing indigenous pedunculate and sessile oak (Quercus robur L. and Q. petraea [Mattuschka] Liebl.) using genetic and morphological traits. (Unterscheidung von Stiel- und Traubeneichen (Quercus robur L. und Quercus petraea [Mattuschka] Liebl.) mit Hilfe von genetischen und morphologischen Merkmalen). Forest Snow and Landscape Research, 75(1/2): 169–183.
  • Igmándy Z.; Béky A.; Pagony H.; Szontagh P. és Varga F. 1986: A kocsánytalan tölgypusztulás helyzete hazánkban 1985-ben. Az Erdő, 35: 255–259. full text
  • Igmándy Z.; Pagony H.; Szontagh P. és Varga F. 1984: Beszámoló a kocsánytalan tölgyeseinkben fellépett pusztulásról 1978-1983. Az Erdő, 33: 334–341. full text
  • Kampfer, S.; Lexer, C.; Glossl, J. and Steinkellner, H. 1998: Characterization of (GA), microsatellite loci from Quercus robur. Hereditas, 129: 183–186. DOI: 10.1111/j.1601-5223.1998.00183.x
  • Keresztesi B. (ed) 1990: A tölgyek komplex genetikai, taxonómiai és rezisztencia élettani kutatása, különös tekintettel a nemesítésre és az erdőpusztulásra. OTKA Zárójelentés, Budapest.
  • Mariette, S.; Cottrell, J.; Csaikl, U.M.; Goikoechea, P.; König, A.; Lowe, A.J.; van Dam, B.C.; Barreneche, T.; Bodenes, C.; Streiff, R.; Burg, K.; Groppe, K.; Munro, R.C.; Tabbener, H. and Kremer, A.. 2002: Comparison of levels of genetic diversity detected with AFLP and microsatellite markers within and among mixed Q. petraea (Matt.) Liebl. and Q. robur L. stands. Silvae Geneticae, 51: 72–79.
  • Müller-Starck, G. 1985: Genetic Differences between „Tolerant” and „Sensitive” Beeches (Fagus sylvatica L.) in an Environmentally Stressed Adult Foret Stand. Silvae Genetica, 34 (6): 241–246.
  • Müller-Starck, G. and Ziehe, M. 1991: Genetic variation in European populations of forest trees. Sauerländer’s Verlag.
  • Nei, M. 1972: Genetic distance between populations. American Naturalist, 106: 283–292.
  • Peakall, R. and Smouse, P. E. 2006: GENALEX 6: genetic analysis in Excel. Population genetic software for teaching and research. Molecular Ecology Notes, 6: 288–295. DOI: 10.1111/j.1471-8286.2005.01155.x
  • Rochel K. 1877: A csálai kincstári erdőgondnokság tölgyeseinek száradásáról. Erdészeti Lapok, 16: 553–556. full text
  • Sander, T.und Franke, A. 1999: Genetischer Vergleich geschädigter und nicht geschädigter Stiel- und Traubeneichenbestände (Quercus robur L. und Quercus petrea (Mattuschka) Liebl.) in Baden- Württemberg unter besonderer Berücksichtigung von Standort, Bestandesaufbau, bisheriger Bestandesbehandlung und anthropogenen Umweltbelastungen. Projektträgershaft. Programm Lebensgrundlage. Freiburg.
  • Sneath, P. H. A. and Sokal, R. R. 1973: Numerical Taxonomy. W.H. Freeman and Company, San Francisco, 230–234.
  • Standovár, T. and Somogyi, Z. 1998: Corresponding patterns of site quality, decline and tree growth in a sessile oak stand. European Journal of Forest Pathology, 28: 133–144. DOI: 10.1111/j.1439-0329.1998.tb01174.x
  • Steinkellner, H.; Fluch, S.; Turetschek, E.; Lexer, C.; Steiff, R.; Kremer, A.; Burg, K. and Gloessl, J. 1997: Identification and characterization of (GA/CT)n microsatellite loci from Quercus petraea. Plant Molecular Biology, 33: 1093–1096. DOI: 10.1023/A:1005736722794
  • Vajna L. 1998: A fák nemspecifikus betegségek okozta elhalása erdei és gyümölcsös ökoszisztémában. Növényvédelem, 34 (5): 229–241.
  • Varga F. 1980: A tölgypusztulás Magyarországon. Erdészeti és Faipari Egyetem Tudományos Közleményei, 2: 11–17.
  • Open Acces

    For non-commercial purposes, let others distribute and copy the article, and include in a collective work, as long as they cite the author(s) and the journal, and provided they do not alter or modify the article.

    Cite this article as:

    Cseke, K., Jobb, Sz., Koltay, A. & Borovics, A. (2014): The genetic pattern of oak decline. Bulletin of Forestry Science, 4(2): 135-147. (in Hungarian)

    Volume 4, Issue 2
    Pages: 135-147

    First published:
    6 October 2014

    Related content

    8

    More articles
    by this authors

    7

    Related content in the Bulletin of Forestry Science*

  • Benke, A., Köbölkuti, Z. A., Cseke, K., Borovics, A. & Tóth, E. Gy. (2022): Identification of SNP markers responsible for drought tolerance in sessile oak populations: results of basic research for sustainable oak management. Bulletin of Forestry Science, 12(2): 77-90.
  • Kollár, T. & Borovics, A. (2021): The updated methodological directives of data processing and maintainance of the hungarian long term forestry experimental network, and its most important results. Bulletin of Forestry Science, 11(2): 95-114.
  • Mátyás, Cs. & Kramer, K. (2016): Adaptive management of forests and their genetic resources in the face of climate change. Bulletin of Forestry Science, 6(1): 7-16.
  • Bordács, S., Nagy, L., Pintér, B., Bach, I., Borovics, A., Kottek, P., Szepesi, A., Fekete, Z., Wisnovszky, K. & Mátyás, Cs. (2013): State of Hungary’s forest genetic resources, 2010-2011. Bulletin of Forestry Science, 3(1): 21-37.
  • Tóth, J. A. (2013): 40 years in a forest ecological research: The Síkfőkút Project. Bulletin of Forestry Science, 3(1): 7-19.
  • Cseke, K., Benke, A. & Borovics, A. (2011): Identification of poplar genotypes based on DNA fingerprinting method. Bulletin of Forestry Science, 1(1): 107-114.
  • Cseke, K., Bordács, S. & Borovics, A. (2011): Taxonomic and genetic study of a mixed oak stand. Bulletin of Forestry Science, 1(1): 95-105.
  • Benke, A., Cseke, K. & Borovics, A. (2011): Population genetic inventory of transdanubian Leuce poplars applying RAPD and cpDNA markers. Bulletin of Forestry Science, 1(1): 83-93.
  • More articles by this authors in the Bulletin of Forestry Science

    * Automatically generated recommendations based on the occurrence of keywords given by authors in the titles and abstracts of other articles. For more detailed search please use the manual search.