Bulletin of Forestry Science / Volume 14 / Issue 2 / Pages 23-24
previous article |

Why we should research canopy processes and what methods are available

Béla Csaba Eötvös

Correspondence

Correspondence: Eötvös Csaba Béla

Postal address: 1027 Budapest, Frankel L. út 1.

e-mail: eotvos.csaba[at]uni-sopron.hu

Abstract

As a result of climate change, we are experiencing accelerating changes in the canopy, affecting the communities that live there. These communities make up half of the total terrestrial biodiversity. To help maintain the ecological balance, canopy research is important, and researchers began to focus on it in the 1980s, quickly adopting existing tools and developing new ones. Choosing the right one for our purposes can often be difficult from this wide range of tools. This synthetic work is intended to help in these situations while pointing out the methods that can be used to acquire practical knowledge that can be applied in forestry.

Keywords: methodology, temperate zone, field of application, application in practice

  • Ambrus A. & Csóka Gy. 1988: A kis téliaraszoló (Operophtera brumata L.) rajzásának vizsgálata feromoncsapdával és jelöléssel. Erdészeti Kutatások 80–81: 167–172.
  • Ambrus A. & Csóka Gy. 1992: Studien über das Schwärmen und die Dichte-abschätzung des Frostspanners, Operophtera brumata L. (Lep., Geometridae) Mit hilfe von Markierungen und Pheromofallen in Ungarn. Anzeiger für Schädlingskunde Pflanzenschutz Umweltschutz 65(5): 88–92. DOI: 10.1007/BF01905052.
  • Barker M.G. & Booth W.E. 1996: Vertical profiles in a Brunei rain forest: II. Leaf characteristics of Dryobalanops lanceolata. Journal of Tropical Forest Science 9(1): 52–66.
  • Basset Y., Aberlenc H.P. & Delvare G. 1992: Abondance, diversité et stratification verticale de l’entomofaune d’une forêt tropicale humide Africaine. Rapport de Mission. Cameroun 1991. Opération Canopée (Fondation ELF). Montpellier.
  • Bassow S.L. & Bazzaz F.A. 1997: Intra- and inter-specific variation in canopy photosynthesis in a mixed deciduous forest. Oecologia 109(4): 507–15. DOI: 10.1007/s004420050111.
  • Billow C., Matson P. & Yoder B. 1994: Seasonal biochemical changes in coniferous forest canopies and their response to fertilization. Tree Physiology 14(6): 563–574. DOI: 10.1093/treephys/14.6.563.
  • Bradley E., Roberts D. & Still C. 2010: Design of an image analysis website for phenological and meteorological monitoring. Environmental Modelling & Software 25(1): 107–116. DOI: 10.1016/j.envsoft.2009.07.006.
  • Delvare G. & Aberlenc H.P. 1989: Des entomologistes sur la canopée. La participation du laboratoire de faunistique et de taxonomie à l’opération radeau des cîmes en Guyane (11 Octobre-8 Novembre 1989). Montpellier.
  • Didham R.K. & Fagan L.L. 2004: ECOLOGY – Forest canopies. In: Burley J., Evans J. & Youngquist J.A. (eds.): Encyclopedia of forest sciences. Elsevier, 68–80.
  • Dobrosi D. 2017: A holtfa és egyéb erdőökológiai tényezők jelentősége a denevérek számára. Erdészettudományi Közlemények 7(2): 135–154. DOI: 10.17164/EK.2017.010.
  • Eötvös Cs.B., Tóth M., Hirka A., Fürjes-Mikó Á., Gáspár Cs., Paulin M. et al. 2023a: A tölgy-csipkéspoloska [Corythucha arcuata (Say, 1832)] rövid távú terjedését befolyásoló tényezők tölgyeseinkben. Erdészettudományi Közlemények 13(2): 131–44. DOI: 10.17164/EK.2023.08.
  • Eötvös Cs.B., Fürjes-Mikó Á., Paulin M., Gáspár Cs., Kárpáti M., Hirka A. et al. 2023b: Enhanced natural regeneration potential of sessile oak in Northern Hungary: role of artificially increased density of insectivorous birds. Forests 14(8): 1548. DOI: 10.3390/f14081548.
  • Fawcett D., Bennie J. & Anderson K. 2021: Monitoring spring phenology of individual tree crowns using drone‐acquired NDVI data. Remote Sensing in Ecology and Conservation 7(2): 227–244. DOI: 10.1002/rse2.184.
  • Floren A. & Karus M. 2006: Sawflies (Hymenoptera: Symphyta) from temperate primary forests and forest plantations of East-Poland collected by insecticidal knockdown fogging. In: Blank S.M., Schmidt S. & Taeger A. (eds.): Recent sawfly research: Synthesis and prospects. Keltern, Polland: Goecke & Evers, 143–156.
  • Futó J. 1964: Szélsebesség mérések a Bálványon. Acta Academiae Paedagogicae Agriensis. Nova series 3: 325–334.
  • Graham E.A., Riordan E.C., Yuen E.M., Estrin D. & Rundel P.W. 2010: Public internet‐connected cameras used as a cross‐continental ground‐based plant phenology monitoring system. Global Change Biology 16(11): 3014–3023. DOI: 10.1111/j.1365-2486.2010.02164.x.
  • Herms D.A., Nielsen D.G & Sydnor D.T. 1990: Comparison of two methods for sampling arboreal insect populations. Journal of Economic Entomology 83(3): 869–874. DOI: 10.1093/jee/83.3.869
  • Hill A.P., Prince P., Covarrubias E.P., Doncaster C.P., Snaddon J.L. & Rogers A. 2018: AudioMoth: evaluation of a smart open acoustic device for monitoring biodiversity and the environment. Methods in Ecology and Evolution 9(5): 1199–1211. DOI: 10.1111/2041-210X.12955.
  • Hill, A.P., Prince P., Snaddon J.L., Doncaster C.P. & Rogers A. 2019: AudioMoth: A low-cost acoustic device for monitoring biodiversity and the environment. HardwareX 6: e00073. DOI: 10.1016/j.ohx.2019.e00073.
  • Hirka A. 2003: Vizsgálatok a magyarországi tölgyek karpofág rovaraival. Nyugat-Magyarországi Egyetem, 143.
  • Ide R. & Oguma H. 2010: Use of digital cameras for phenological observations. Ecological Informatics 5(5): 339–347. DOI: 10.1016/j.ecoinf.2010.07.002.
  • Imrei Z., Lohonyai Zs., Muskovits J., Matula J., Vuts J., Fail J. et al. 2020. Developing a non‐sticky trap design for monitoring jewel beetles. Journal of Applied Entomology 144(3): 224–231. DOI: 10.1111/jen.12727.
  • Janik G. 2021: A magyarországi bükkösök hosszú távú egészségi állapot trendjei. Soproni Egyetem, Sopron, 144.
  • Johnson L.F., Hlavka C.A. & Peterson D.L. 1994: Multivariate analysis of AVIRIS data for canopy biochemical estimation along the Oregon transect. Remote Sensing of Environment 47(2): 216–230. DOI: 10.1016/0034-4257(94)90157-0.
  • Jonas T., Webster C., Mazzotti G. & Malle J. 2020: HPEval: a canopy shortwave radiation transmission model using high-resolution hemispherical images. Agricultural and Forest Meteorology 284: 107903. DOI: 10.1016/j.agrformet.2020.107903.
  • Kardos L. & Kardos D. 2024: 10 Lombkorona tanösvény és sétány Magyarországon-térkép, nyitvatartás, árak ... Https://Trekhunt.Com/Hu/Article/Lombkorona-Tanosveny-Magyarorszag-Terkep-Nyitvatartas-Arak/.
  • Kays R., Sheppard J., Mclean K., Welch C., Paunescu C., Wang V. et al. 2019: Hot monkey, cold reality: surveying rainforest canopy mammals using drone-mounted thermal infrared sensors. International Journal of Remote Sensing 40(2): 407–419. DOI: 10.1080/01431161.2018.1523580.
  • Kellner J.R., Armston J., Birrer M., Cushman K.C., Duncanson L., Eck C. et al. 2019: New opportunities for forest remote sensing through ultra-high-density drone lidar. Surveys in Geophysics 40(4): 959–977. DOI: 10.1007/s10712-019-09529-9.
  • Kern A., Marjanović H., Csóka Gy., Móricz N., Pernek M., Hirka A. et al. 2021: Detecting the oak lace bug infestation in oak forests using MODIS and meteorological data. Agricultural and Forest Meteorology 306: 108436. DOI: 10.1016/j.agrformet.2021.108436.
  • Kirstová M., Pyszko P., Šipoš J., Drozd P. & Kočárek P. 2017: Vertical distribution of earwigs (Dermaptera: Forficulidae) in a temperate lowland forest, based on sampling with a mobile aerial lift platform. Entomological Science 20(1): 57–64. DOI: 10.1111/ens.12229.
  • Koltay A. 2006: Az erdők egészségi állapotának változásai az erdővédelmi monitoring rendszerek adatai alapján. Tájökológiai Lapok 4(2): 327–337. DOI: 10.56617/tl.4470.
  • Leroy, B. M.L., Seibold S., Morinière J., Bozicevic V., Jaworek J, Roth N. et al. 2022: Metabarcoding of canopy arthropods reveals negative impacts of forestry insecticides on community structure across multiple taxa. Journal of Applied Ecology 59(4): 997–1012. DOI: 10.1111/1365-2664.14110.
  • Lowman M.D. 1985: Temporal and spatial variability in insect grazing of the canopies of five Australian rainforest tree species. Australian Journal of Ecology 10(1): 7–24. DOI: 10.1111/j.1442-9993.1985.tb00859.x.
  • Lowman M.D. 2009: Canopy research in the twenty-first century: a review of arboreal ecology. Tropical Ecology 50(1): 125–36.
  • Lowman M.D. 2009: Canopy walkways for conservation: a tropical biologist’s panacea or fuzzy metrics to justify ecotourism. Biotropica 41(5): 545–548. DOI: 10.1111/j.1744-7429.2009.00562.x.
  • Lowman M.D. 2021: Life in the treetops—an overview of forest canopy science and its future directions. Plants, People, Planet 3(1): 16–21. DOI: 10.1002/ppp3.10125.
  • Lowman M.D. & Wittman P.K. 1996: Forest canopies: methods, hypotheses, and future directions. Annual Review of Ecology and Systematics 27(1): 55–81. DOI: 10.1146/annurev.ecolsys.27.1.55.
  • Maguire D.Y., Robert K., Brochu K., Larrivée M., Buddle C.M. & Wheeler T.A. 2014: Vertical stratification of beetles (Coleoptera) and flies (Diptera) in temperate forest canopies. Environmental Entomology 43(1): 9–17. DOI: 10.1603/EN13056.
  • Manninger M. 2016: Intenzív monitoring. http://Klima.Erti.Hu/Home/Intenziv-Monitoring/.
  • Mátyás Cs. & Ujváriné Jármay É. 2016: Az „évszázad kísérlete” egy csonkán maradt tudományos életpálya tanúsága. Erdészeti Lapok CLI(12): 423–425. full text
  • Maurya N.K., Tripathi A.K., Chauhan A., Pandey P.C. & Lamine S. 2022: Recent advancement and role of drones in forest monitoring: Research and practices. In: Arellano P. & Pandey P.C. (eds.): Advances in remote sensing for forest monitoring. Wiley, 223–254.
  • Nakamura M., Muller O., Tayanagi S., Nakaji T. & Hiura T. 2010: Experimental branch warming alters tall tree leaf phenology and acorn production. Agricultural and Forest Meteorology 150(7–8): 1026–1029. DOI: 10.1016/j.agrformet.2010.04.001.
  • Nakamura M., Nakaji T., Muller O. & Hiura T. 2015: Different initial responses of the canopy herbivory rate in mature oak trees to experimental soil and branch warming in a soil‐freezing area. Oikos 124(8): 1071–1077. DOI: 10.1111/oik.01940.
  • NFK 2021: Erdészeti mérő- és megfigyelő rendszer. https://Nfk.Gov.Hu/Erdeszeti_Mero__es_Megfigyelo_Rendszer__EMMRE__news_537.
  • Roger F., Ghanavi H.R., Danielsson N., Wahlberg N., Löndahl J., Pettersson L.B. et al. 2022: Airborne environmental DNA metabarcoding for the monitoring of terrestrial insects–a proof of concept from the field. Environmental DNA 4(4): 790–807. DOI: 10.1002/edn3.290.
  • Sallé A., Cours J., Souchu E.L., Lopez-Vaamonde C., Pincebourde S. & Bouget C. 2021: Climate change alters temperate forest canopies and indirectly reshapes arthropod communities. Frontiers in Forests and Global Change 4: 710854. DOI: 10.3389/ffgc.2021.710854.
  • Sárospataki M. & Markó V. 1995: Flight activity of Coccinella septempunctata (Coleoptera: Coccinellidae) at different strata of a forest in relation to migration to hibernation sites. European Journal of Entomology 92: 415–419.
  • Schowalter T.D. 1995: Canopy invertebrate community response to disturbance and consequences of herbivory in temperate and tropical forests. Selbyana 16(1): 41–48.
  • Seifert C.L., Lamarre G.P.A., Volf M., Jorge L.R., Miller S.E., Wagner D.L. et al. 2020: Vertical stratification of a temperate forest caterpillar community in Eastern North America. Oecologia 192(2): 501–514. DOI: 10.1007/s00442-019-04584-w.
  • Shutt J.D., Trivedi U.H. & Nicholls J.A. 2021: Faecal metabarcoding reveals pervasive long-distance impacts of garden bird feeding. Proceedings of the Royal Society B: Biological Sciences 288(1951): 20210480. DOI: 10.1098/rspb.2021.0480.
  • Šigut M., Šigutová H., Šipoš J., Pyszko P., Kotásková N. & Drozd P. 2018: Vertical canopy gradient shaping the stratification of leaf‐chewer–parasitoid interactions in a temperate forest. Ecology and Evolution 8(15): 7297–7311. DOI: 10.1002/ece3.4194.
  • Somogyi Z., Koltay A., Molnár T. & Móricz N. 2018: Távérzékelésen alapuló erdõállapot monitoring rendszer. Erdészeti Lapok CLIII(9): 277–278.
  • Sperisen C., Büchler U. & Mátyás G. 1998: Genetic variation of mitochondrial DNA reveals subdivision of norway spruce (Picea abies (L.) Karst.). In Karp A., Isaac P.G. & Ingram D.S. (eds.): Molecular tools for screening biodiversity: plants and animals. Dordrecht: Springer Netherlands, 413–417.
  • Stireman J.O., Cerretti P., Whitmore D., Hardersen S. & Gianelle D. 2012: Composition and stratification of a tachinid (Diptera: Tachinidae) parasitoid community in a European temperate plain forest. Insect Conservation and Diversity 5(5): 346–357. DOI: 10.1111/j.1752-4598.2011.00168.x.
  • Stuller Z. 2009: Erdővédelmi hálózat. In: Kolozs L. (ed.): Erdővédelmi Mérő- és Megfigyelő Hálózat (EMMRE) 1988–2008. Budapest: Mezőgazdasági Szakigazgatási Hivatal Központ Erdészeti Igazgatóság, 12–23.
  • Tang L. & Shao G. 2015: Drone remote sensing for forestry research and practices. Journal of Forestry Research 26(4): 791–797. DOI: 10.1007/s11676-015-0088-y.
  • Tattoni D.J. & LaBarbera K. 2022: Capture height biases for birds in mist-nets vary by taxon, season, and foraging guild in Northern California. Journal of Field Ornithology 93(1): art1. DOI: 10.5751/JFO-00021-930101.
  • Tinbergen J.M. & Dietz M.W. 1994: Parental energy expenditure during brood rearing in the great tit (Parus major) in relation to body mass, temperature, food availability and clutch size. Functional Ecology 8(5): 563. DOI: 10.2307/2389916.
  • Toenies M. & Rich L. 2021: Advancing bird survey efforts through novel recorder technology and automated species identification. California Fish and Wildlife Journal 107(2): 56–70. DOI: 10.51492/cfwj.107.5.
  • Ulyshen M.D. 2011: Arthropod vertical stratification in temperate deciduous forests: implications for conservationoriented management. Forest Ecology and Management 261(9): 1479–1489. DOI: 10.1016/j.foreco.2011.01.033.
  • Wang J., D’Orangeville L. & Taylor A.R. 2023: Tree species growth response to climate warming varies by forest canopy position in boreal and temperate forests. Global Change Biology 29(18): 5397–5414. DOI: 10.1111/gcb.16853.
  • Witt R.R., Beranek C.T., Howell L.G., Ryan S.A., Clulow J., Jordan N.R. et al. 2020: Real-time drone derived thermal imagery outperforms traditional survey methods for an arboreal forest mammal. PLOS ONE 15(11): e0242204. DOI: 10.1371/journal.pone.0242204.
  • Yumoto T. & Nakashizuka T. 2005: The Canopy Biology Program in Sarawak: scope, methods, and merit. In: Roubik D.W., Sakai S. & Karim A.A.H. (eds.): Pollination ecology and the rain forest. New York: Springer-Verlag, 13–21.
  • Open Acces

    For non-commercial purposes, let others distribute and copy the article, and include in a collective work, as long as they cite the author(s) and the journal, and provided they do not alter or modify the article.

    Cite this article as:

    Eötvös, Cs. B. (2024): Why we should research canopy processes and what methods are available. Bulletin of Forestry Science, 14(2): 23-24. (in Hungarian) DOI: 10.17164/EK.2024.12

    Volume 14, Issue 2
    Pages: 23-24

    DOI: 10.17164/EK.2024.12

    First published:
    31 January 2025

    More articles
    by this authors

    5

    More articles by this authors in the Bulletin of Forestry Science