1. | Ambrus A. & Csóka Gy. 1988: A kis téliaraszoló (Operophtera brumata L.) rajzásának vizsgálata feromoncsapdával és jelöléssel. Erdészeti Kutatások 80–81: 167–172. |
2. | Ambrus A. & Csóka Gy. 1992: Studien über das Schwärmen und die Dichte-abschätzung des Frostspanners, Operophtera brumata L. (Lep., Geometridae) Mit hilfe von Markierungen und Pheromofallen in Ungarn. Anzeiger für Schädlingskunde Pflanzenschutz Umweltschutz 65(5): 88–92. DOI: 10.1007/BF01905052. |
3. | Barker M.G. & Booth W.E. 1996: Vertical profiles in a Brunei rain forest: II. Leaf characteristics of Dryobalanops lanceolata. Journal of Tropical Forest Science 9(1): 52–66. |
4. | Basset Y., Aberlenc H.P. & Delvare G. 1992: Abondance, diversité et stratification verticale de l’entomofaune d’une forêt tropicale humide Africaine. Rapport de Mission. Cameroun 1991. Opération Canopée (Fondation ELF). Montpellier. |
5. | Bassow S.L. & Bazzaz F.A. 1997: Intra- and inter-specific variation in canopy photosynthesis in a mixed deciduous forest. Oecologia 109(4): 507–15. DOI: 10.1007/s004420050111. |
6. | Billow C., Matson P. & Yoder B. 1994: Seasonal biochemical changes in coniferous forest canopies and their response to fertilization. Tree Physiology 14(6): 563–574. DOI: 10.1093/treephys/14.6.563. |
7. | Bradley E., Roberts D. & Still C. 2010: Design of an image analysis website for phenological and meteorological monitoring. Environmental Modelling & Software 25(1): 107–116. DOI: 10.1016/j.envsoft.2009.07.006. |
8. | Delvare G. & Aberlenc H.P. 1989: Des entomologistes sur la canopée. La participation du laboratoire de faunistique et de taxonomie à l’opération radeau des cîmes en Guyane (11 Octobre-8 Novembre 1989). Montpellier. |
9. | Didham R.K. & Fagan L.L. 2004: ECOLOGY – Forest canopies. In: Burley J., Evans J. & Youngquist J.A. (eds.): Encyclopedia of forest sciences. Elsevier, 68–80. |
10. | Dobrosi D. 2017: A holtfa és egyéb erdőökológiai tényezők jelentősége a denevérek számára. Erdészettudományi Közlemények 7(2): 135–154. DOI: 10.17164/EK.2017.010. |
11. | Eötvös Cs.B., Tóth M., Hirka A., Fürjes-Mikó Á., Gáspár Cs., Paulin M. et al. 2023a: A tölgy-csipkéspoloska [Corythucha arcuata (Say, 1832)] rövid távú terjedését befolyásoló tényezők tölgyeseinkben. Erdészettudományi Közlemények 13(2): 131–44. DOI: 10.17164/EK.2023.08. |
12. | Eötvös Cs.B., Fürjes-Mikó Á., Paulin M., Gáspár Cs., Kárpáti M., Hirka A. et al. 2023b: Enhanced natural regeneration potential of sessile oak in Northern Hungary: role of artificially increased density of insectivorous birds. Forests 14(8): 1548. DOI: 10.3390/f14081548. |
13. | Fawcett D., Bennie J. & Anderson K. 2021: Monitoring spring phenology of individual tree crowns using drone‐acquired NDVI data. Remote Sensing in Ecology and Conservation 7(2): 227–244. DOI: 10.1002/rse2.184. |
14. | Floren A. & Karus M. 2006: Sawflies (Hymenoptera: Symphyta) from temperate primary forests and forest plantations of East-Poland collected by insecticidal knockdown fogging. In: Blank S.M., Schmidt S. & Taeger A. (eds.): Recent sawfly research: Synthesis and prospects. Keltern, Polland: Goecke & Evers, 143–156. |
15. | Futó J. 1964: Szélsebesség mérések a Bálványon. Acta Academiae Paedagogicae Agriensis. Nova series 3: 325–334. |
16. | Graham E.A., Riordan E.C., Yuen E.M., Estrin D. & Rundel P.W. 2010: Public internet‐connected cameras used as a cross‐continental ground‐based plant phenology monitoring system. Global Change Biology 16(11): 3014–3023. DOI: 10.1111/j.1365-2486.2010.02164.x. |
17. | Herms D.A., Nielsen D.G & Sydnor D.T. 1990: Comparison of two methods for sampling arboreal insect populations. Journal of Economic Entomology 83(3): 869–874. DOI: 10.1093/jee/83.3.869 |
18. | Hill A.P., Prince P., Covarrubias E.P., Doncaster C.P., Snaddon J.L. & Rogers A. 2018: AudioMoth: evaluation of a smart open acoustic device for monitoring biodiversity and the environment. Methods in Ecology and Evolution 9(5): 1199–1211. DOI: 10.1111/2041-210X.12955. |
19. | Hill, A.P., Prince P., Snaddon J.L., Doncaster C.P. & Rogers A. 2019: AudioMoth: A low-cost acoustic device for monitoring biodiversity and the environment. HardwareX 6: e00073. DOI: 10.1016/j.ohx.2019.e00073. |
20. | Hirka A. 2003: Vizsgálatok a magyarországi tölgyek karpofág rovaraival. Nyugat-Magyarországi Egyetem, 143. |
21. | Ide R. & Oguma H. 2010: Use of digital cameras for phenological observations. Ecological Informatics 5(5): 339–347. DOI: 10.1016/j.ecoinf.2010.07.002. |
22. | Imrei Z., Lohonyai Zs., Muskovits J., Matula J., Vuts J., Fail J. et al. 2020. Developing a non‐sticky trap design for monitoring jewel beetles. Journal of Applied Entomology 144(3): 224–231. DOI: 10.1111/jen.12727. |
23. | Janik G. 2021: A magyarországi bükkösök hosszú távú egészségi állapot trendjei. Soproni Egyetem, Sopron, 144. |
24. | Johnson L.F., Hlavka C.A. & Peterson D.L. 1994: Multivariate analysis of AVIRIS data for canopy biochemical estimation along the Oregon transect. Remote Sensing of Environment 47(2): 216–230. DOI: 10.1016/0034-4257(94)90157-0. |
25. | Jonas T., Webster C., Mazzotti G. & Malle J. 2020: HPEval: a canopy shortwave radiation transmission model using high-resolution hemispherical images. Agricultural and Forest Meteorology 284: 107903. DOI: 10.1016/j.agrformet.2020.107903. |
26. | Kardos L. & Kardos D. 2024: 10 Lombkorona tanösvény és sétány Magyarországon-térkép, nyitvatartás, árak ... Https://Trekhunt.Com/Hu/Article/Lombkorona-Tanosveny-Magyarorszag-Terkep-Nyitvatartas-Arak/. |
27. | Kays R., Sheppard J., Mclean K., Welch C., Paunescu C., Wang V. et al. 2019: Hot monkey, cold reality: surveying rainforest canopy mammals using drone-mounted thermal infrared sensors. International Journal of Remote Sensing 40(2): 407–419. DOI: 10.1080/01431161.2018.1523580. |
28. | Kellner J.R., Armston J., Birrer M., Cushman K.C., Duncanson L., Eck C. et al. 2019: New opportunities for forest remote sensing through ultra-high-density drone lidar. Surveys in Geophysics 40(4): 959–977. DOI: 10.1007/s10712-019-09529-9. |
29. | Kern A., Marjanović H., Csóka Gy., Móricz N., Pernek M., Hirka A. et al. 2021: Detecting the oak lace bug infestation in oak forests using MODIS and meteorological data. Agricultural and Forest Meteorology 306: 108436. DOI: 10.1016/j.agrformet.2021.108436. |
30. | Kirstová M., Pyszko P., Šipoš J., Drozd P. & Kočárek P. 2017: Vertical distribution of earwigs (Dermaptera: Forficulidae) in a temperate lowland forest, based on sampling with a mobile aerial lift platform. Entomological Science 20(1): 57–64. DOI: 10.1111/ens.12229. |
31. | Koltay A. 2006: Az erdők egészségi állapotának változásai az erdővédelmi monitoring rendszerek adatai alapján. Tájökológiai Lapok 4(2): 327–337. DOI: 10.56617/tl.4470. |
32. | Leroy, B. M.L., Seibold S., Morinière J., Bozicevic V., Jaworek J, Roth N. et al. 2022: Metabarcoding of canopy arthropods reveals negative impacts of forestry insecticides on community structure across multiple taxa. Journal of Applied Ecology 59(4): 997–1012. DOI: 10.1111/1365-2664.14110. |
33. | Lowman M.D. 1985: Temporal and spatial variability in insect grazing of the canopies of five Australian rainforest tree species. Australian Journal of Ecology 10(1): 7–24. DOI: 10.1111/j.1442-9993.1985.tb00859.x. |
34. | Lowman M.D. 2009: Canopy research in the twenty-first century: a review of arboreal ecology. Tropical Ecology 50(1): 125–36. |
35. | Lowman M.D. 2009: Canopy walkways for conservation: a tropical biologist’s panacea or fuzzy metrics to justify ecotourism. Biotropica 41(5): 545–548. DOI: 10.1111/j.1744-7429.2009.00562.x. |
36. | Lowman M.D. 2021: Life in the treetops—an overview of forest canopy science and its future directions. Plants, People, Planet 3(1): 16–21. DOI: 10.1002/ppp3.10125. |
37. | Lowman M.D. & Wittman P.K. 1996: Forest canopies: methods, hypotheses, and future directions. Annual Review of Ecology and Systematics 27(1): 55–81. DOI: 10.1146/annurev.ecolsys.27.1.55. |
38. | Maguire D.Y., Robert K., Brochu K., Larrivée M., Buddle C.M. & Wheeler T.A. 2014: Vertical stratification of beetles (Coleoptera) and flies (Diptera) in temperate forest canopies. Environmental Entomology 43(1): 9–17. DOI: 10.1603/EN13056. |
39. | Manninger M. 2016: Intenzív monitoring. http://Klima.Erti.Hu/Home/Intenziv-Monitoring/. |
40. | Mátyás Cs. & Ujváriné Jármay É. 2016: Az „évszázad kísérlete” egy csonkán maradt tudományos életpálya tanúsága. Erdészeti Lapok CLI(12): 423–425. Teljes szöveg |
41. | Maurya N.K., Tripathi A.K., Chauhan A., Pandey P.C. & Lamine S. 2022: Recent advancement and role of drones in forest monitoring: Research and practices. In: Arellano P. & Pandey P.C. (eds.): Advances in remote sensing for forest monitoring. Wiley, 223–254. |
42. | Nakamura M., Muller O., Tayanagi S., Nakaji T. & Hiura T. 2010: Experimental branch warming alters tall tree leaf phenology and acorn production. Agricultural and Forest Meteorology 150(7–8): 1026–1029. DOI: 10.1016/j.agrformet.2010.04.001. |
43. | Nakamura M., Nakaji T., Muller O. & Hiura T. 2015: Different initial responses of the canopy herbivory rate in mature oak trees to experimental soil and branch warming in a soil‐freezing area. Oikos 124(8): 1071–1077. DOI: 10.1111/oik.01940. |
44. | NFK 2021: Erdészeti mérő- és megfigyelő rendszer. https://Nfk.Gov.Hu/Erdeszeti_Mero__es_Megfigyelo_Rendszer__EMMRE__news_537. |
45. | Roger F., Ghanavi H.R., Danielsson N., Wahlberg N., Löndahl J., Pettersson L.B. et al. 2022: Airborne environmental DNA metabarcoding for the monitoring of terrestrial insects–a proof of concept from the field. Environmental DNA 4(4): 790–807. DOI: 10.1002/edn3.290. |
46. | Sallé A., Cours J., Souchu E.L., Lopez-Vaamonde C., Pincebourde S. & Bouget C. 2021: Climate change alters temperate forest canopies and indirectly reshapes arthropod communities. Frontiers in Forests and Global Change 4: 710854. DOI: 10.3389/ffgc.2021.710854. |
47. | Sárospataki M. & Markó V. 1995: Flight activity of Coccinella septempunctata (Coleoptera: Coccinellidae) at different strata of a forest in relation to migration to hibernation sites. European Journal of Entomology 92: 415–419. |
48. | Schowalter T.D. 1995: Canopy invertebrate community response to disturbance and consequences of herbivory in temperate and tropical forests. Selbyana 16(1): 41–48. |
49. | Seifert C.L., Lamarre G.P.A., Volf M., Jorge L.R., Miller S.E., Wagner D.L. et al. 2020: Vertical stratification of a temperate forest caterpillar community in Eastern North America. Oecologia 192(2): 501–514. DOI: 10.1007/s00442-019-04584-w. |
50. | Shutt J.D., Trivedi U.H. & Nicholls J.A. 2021: Faecal metabarcoding reveals pervasive long-distance impacts of garden bird feeding. Proceedings of the Royal Society B: Biological Sciences 288(1951): 20210480. DOI: 10.1098/rspb.2021.0480. |
51. | Šigut M., Šigutová H., Šipoš J., Pyszko P., Kotásková N. & Drozd P. 2018: Vertical canopy gradient shaping the stratification of leaf‐chewer–parasitoid interactions in a temperate forest. Ecology and Evolution 8(15): 7297–7311. DOI: 10.1002/ece3.4194. |
52. | Somogyi Z., Koltay A., Molnár T. & Móricz N. 2018: Távérzékelésen alapuló erdõállapot monitoring rendszer. Erdészeti Lapok CLIII(9): 277–278. |
53. | Sperisen C., Büchler U. & Mátyás G. 1998: Genetic variation of mitochondrial DNA reveals subdivision of norway spruce (Picea abies (L.) Karst.). In Karp A., Isaac P.G. & Ingram D.S. (eds.): Molecular tools for screening biodiversity: plants and animals. Dordrecht: Springer Netherlands, 413–417. |
54. | Stireman J.O., Cerretti P., Whitmore D., Hardersen S. & Gianelle D. 2012: Composition and stratification of a tachinid (Diptera: Tachinidae) parasitoid community in a European temperate plain forest. Insect Conservation and Diversity 5(5): 346–357. DOI: 10.1111/j.1752-4598.2011.00168.x. |
55. | Stuller Z. 2009: Erdővédelmi hálózat. In: Kolozs L. (ed.): Erdővédelmi Mérő- és Megfigyelő Hálózat (EMMRE) 1988–2008. Budapest: Mezőgazdasági Szakigazgatási Hivatal Központ Erdészeti Igazgatóság, 12–23. |
56. | Tang L. & Shao G. 2015: Drone remote sensing for forestry research and practices. Journal of Forestry Research 26(4): 791–797. DOI: 10.1007/s11676-015-0088-y. |
57. | Tattoni D.J. & LaBarbera K. 2022: Capture height biases for birds in mist-nets vary by taxon, season, and foraging guild in Northern California. Journal of Field Ornithology 93(1): art1. DOI: 10.5751/JFO-00021-930101. |
58. | Tinbergen J.M. & Dietz M.W. 1994: Parental energy expenditure during brood rearing in the great tit (Parus major) in relation to body mass, temperature, food availability and clutch size. Functional Ecology 8(5): 563. DOI: 10.2307/2389916. |
59. | Toenies M. & Rich L. 2021: Advancing bird survey efforts through novel recorder technology and automated species identification. California Fish and Wildlife Journal 107(2): 56–70. DOI: 10.51492/cfwj.107.5. |
60. | Ulyshen M.D. 2011: Arthropod vertical stratification in temperate deciduous forests: implications for conservationoriented management. Forest Ecology and Management 261(9): 1479–1489. DOI: 10.1016/j.foreco.2011.01.033. |
61. | Wang J., D’Orangeville L. & Taylor A.R. 2023: Tree species growth response to climate warming varies by forest canopy position in boreal and temperate forests. Global Change Biology 29(18): 5397–5414. DOI: 10.1111/gcb.16853. |
62. | Witt R.R., Beranek C.T., Howell L.G., Ryan S.A., Clulow J., Jordan N.R. et al. 2020: Real-time drone derived thermal imagery outperforms traditional survey methods for an arboreal forest mammal. PLOS ONE 15(11): e0242204. DOI: 10.1371/journal.pone.0242204. |
63. | Yumoto T. & Nakashizuka T. 2005: The Canopy Biology Program in Sarawak: scope, methods, and merit. In: Roubik D.W., Sakai S. & Karim A.A.H. (eds.): Pollination ecology and the rain forest. New York: Springer-Verlag, 13–21. |