1. | Bereczki K., Ódor P., Csóka Gy., Mag Z. & Báldi A. 2014: Effects of forest heterogeneity on the efficiency of caterpillar control service provided by birds in temperate oak forests. Forest Ecology and Management 327: 96–105. DOI: 10.1016/j.foreco.2014.05.001 |
2. | Cleveland W.S. 1979: Robust Locally Weighted Regression and Smoothing Scatterplots. Journal of the American Statistical Association 74(368): 829. DOI: 10.2307/2286407 |
3. | Conrad K.F., Warren M.S., Fox R., Parsons M.S. & Woiwod I.P. 2006: Rapid declines of common, widespread British moths provide evidence of an insect biodiversity crisis. Biological Conservation 132(3): 279–291. DOI: 10.1016/j.biocon.2006.04.020 |
4. | Conrad K.F., Woiwod I.P. Parsons M. Fox R. & Warren M.S. 2004: Long-term population trends in widespread British moths. Journal of Insect Conservation 8(2/3): 119–136. DOI: 10.1023/B:JICO.0000045810.36433.c6 |
5. | Csóka Gy. 1996: Lepkehernyók. Budapest, HU: Agroinform: p. 152. |
6. | Csóka Gy. 1997: Increased insect damage in Hungarian forests under drought impact. Biologia 52(1–14): 159–162. |
7. | Csóka Gy., Hirka A., Szőcs L. & Hajek A.E. 2014: A rovarpatogén Entomophaga maimaiga Humber, Shimazu & Soper, 1988 (Entomophtorales: Entomophtoraceae) gomba megjelenése magyarországi gyapjaslepke (Lymantria dispar) populációkban. Növényvédelem 50(6): 257–262. |
8. | Csóka Gy., Hirka A. Szőcs L. Móricz N. Rasztovits E. & Podor Z. 2018: Weather-dependent fluctuations in the abundance of the oak processionary moth, Thaumetopoea processionea (Lepidoptera: Notodontidae). European Journal of Entomology 115: 249–255. DOI: 10.14411/eje.2018.024 |
9. | Dangles O. & Casas J. 2019: Ecosystem services provided by insects for achieving sustainable development goals. Ecosystem Services 35: 109–115. DOI: 10.1016/j.ecoser.2018.12.002 |
10. | Eötvös Cs.B., Hirka A., Gimesi L., Lövei G.L., Gáspár Cs. & Csóka Gy. 2021. No Long-Term Decrease in Caterpillar Availability for Invertivorous Birds in Deciduous Forests in Hungary, Forests 12(8): 1070. DOI: 10.3390/f12081070. |
11. | Georgiev G., Mirchev P., Rossnev B. Petkov P. Georgieva M. Pilarska D. et al. 2013: Potential of Entomophaga maimaiga Humber, Shimazu and Soper (entomophthorales) for suppressing Lymantria dispar (linnaeus) outbreaks in Bulgaria. Comptes Rendus de L’Academie Bulgare Des Sciences 66(7): 1025–1032. DOI: 10.7546/CR-2013-66-7-13101331-14 |
12. | Gibb J.A. & Betts M.M. 1963: Food and Food Supply of Nestling Tits (Paridae) in Breckland Pine. The Journal of Animal Ecology 32(3): 489. DOI: 10.2307/2605 |
13. | Gilroy J.J., Anderson G.Q.A., Grice P.V., Vickery J.A., Watts P.N. & Sutherland W.J. 2009: Foraging habitat selection, diet and nestling condition in Yellow Wagtails Motacilla flava breeding on arable farmland. Bird Study 56(2): 221–232. DOI: 10.1080/00063650902792080 |
14. | Hajek A.E., Butler L., Walsh S.R.A., Silver J.C., Hain F.P., Hastings F.L. et al. 1996: Host Range of the Gypsy Moth (Lepidoptera: Lymantriidae) Pathogen Entomophaga maimaiga (Zygomycetes: Entomophthorales) in the Field Versus Laboratory. Environmental Entomology 25(4): 709–721. DOI: 10.1093/ee/25.4.709 |
15. | Hajek A.E., Butler L. & Wheeler M.M. 1995: Laboratory Bioassays Testing the Host Range of the Gypsy Moth Fungal Pathogen Entomophaga maimaiga. Biological Control 5(4): 530–544. DOI: 10.1006/bcon.1995.1063 |
16. | Hallmann C.A., Sorg M., Jongejans E., Siepel H., Hofland N., Schwan H. et al. 2017: More than 75 percent decline over 27 years in total flying insect biomass in protected areas. PLOS ONE 12(10): e0185809. DOI: 10.1371/journal.pone.0185809 |
17. | Hallmann C.A., Zeegers T., Klink R., Vermeulen R., Wielink P., Spijkers H. et al. 2020: Declining abundance of beetles, moths and caddisflies in the Netherlands. Insect Conservation and Diversity 13(2): 127–139. DOI: 10.1111/icad.12377 |
18. | Hirka A., Szabóky Cs., Szőcs L. & Csóka Gy. 2011: 50 éves az Erdészeti Fénycsapda Hálózat. Növényvédelem 47(11): 474–479. |
19. | Hlásny T., Trombik J., Holuša J., Lukášová K., Grendár M., Turčáni M. et al. 2016: Multi-decade patterns of gypsy moth fluctuations in the Carpathian Mountains and options for outbreak forecasting. Journal of Pest Science 89(2): 413–425. DOI: 10.1007/s10340-015-0694-7 |
20. | Holmes R.T., Schultz J.C. & Nothnagle P. 1979: Bird Predation on Forest Insects: An Exclosure Experiment. Science 206(4417): 462–463. DOI: 10.1126/science.206.4417.462 |
21. | Hrašovec B., Pernek M., Lukić I., Milotić M., Diminić D., Franjević M. et al. 2013: First record of the pathogenic fungus Entomophaga maimaiga Humber, Shimazu, and Soper (Entomophthorales: Entomophthoraceae) within an outbreak populations of Lymantria dispar (Lepidoptera: Erebidae) in Croatia. Periodicum Biologorum 115:379–383. |
22. | Jactel H., Petit J., Desprez-Loustau M.-L., Delzon S., Piou D., Battisti A. et al. 2012: Drought effects on damage by forest insects and pathogens: a meta-analysis. Global Change Biology 18(1): 267–276. DOI: 10.1111/j.1365-2486.2011.02512.x |
23. | Kirstin A. & Patocka J. 1997: Birds as predators of Lepidoptera: Selected examples. Biologia, 52: 319–326. |
24. | Klapwijk M.J., Walter J.A., Hirka A., Csóka Gy. Björkman C. & Liebhold A.M. 2018: Transient synchrony among populations of five foliage-feeding Lepidoptera. Journal of Animal Ecology 87(4): 1058–1068. DOI: 10.1111/1365-2656.12823 |
25. | Leather S.R. 2018: “Ecological Armageddon” – more evidence for the drastic decline in insect numbers. Annals of Applied Biology 172(1): 1–3. DOI: 10.1111/aab.12410 |
26. | Leskó K.,Szentkirályi F. & Kádár F. 1994: Gyapjaslepke (Lymantria dispar L.) populációk fluktuációs mintázatai 1963–1993 közötti időszakban Magyarországon. Erdészeti Kutatások 84: 163–176. |
27. | Leskó K., Szentkirályi F. & Kádár F. 1995: Aranyfarú szövőlepke (Euproctis chrysorrhoea L.) magyarországi populációinak hosszú távú fluktuációs mintázatai. Erdészeti Kutatások 85: 169–185. |
28. | Leskó K., Szentkirályi F. & Kádár F. 1997: A gyűrűsszövő (Melacosoma neustria L.) hosszú távú (1962–1996) populációingadozásai Magyarországon. Erdészeti Kutatások 86–87: 171–200. |
29. | Leskó K., Szentkirályi F. & Kádár F. 1998: Araszoló lepkefajok fluktuáció-mintázatának elemzése hosszú távú (1961-1997) magyarországi fénycsapdázási és kártételi idősorokban. Erdészeti Kutatások 88: 319–333. |
30. | Leskó K., Szentkirályi F. & Kádár F. 1999: A kis téli araszoló hosszú távú (1962–1997) populáció-fluktuációinak jellemzése az erdészeti fénycsapda-hálózat mintavételei alapján. Erdészeti Kutatások 89: 169–182. |
31. | Losey J.E. & Vaughan M. 2006: The Economic Value of Ecological Services Provided by Insects. BioScience 56(4): 311–323. DOI: 10.1641/0006-3568(2006)56[311:TEVOES]2.0.CO;2 |
32. | Macgregor C.J., Williams J.H., Bell J.R. & Thomas C.D. 2019: Moth biomass has fluctuated over 50 years in Britain but lacks a clear trend. Nature Ecology & Evolution 3(12): 1645–1649. DOI: 10.1038/s41559-019-1028-6 |
33. | Manderino R., Crist T.O. & Haynes K.J. 2014: Lepidoptera-specific insecticide used to suppress gypsy moth outbreaks may benefit non-target forest Lepidoptera. Agricultural and Forest Entomology 16(4): 359–368. DOI: 10.1111/afe.12066 |
34. | McManus M. & Csóka Gy. 2007: History and Impact of Gypsy Moth in North America and Comparison to the Recent Outbreaks in Europe. Acta Silvatica & Lignaria Hungarica 3: 47–64. DOI: 10.37045/aslh-2007-0004 Teljes szöveg |
35. | Morse D.H. 2017: The Insectivorous Bird as an Adaptive Strategy. Annual Review of Ecology and Systematics. Annual Reviews 2: 177-200. DOI: 10.2307/2096927 |
36. | Nyffeler M., Şekercioğlu Ç.H., & Whelan C.J. 2018: Insectivorous birds consume an estimated 400–500 million tons of prey annually. The Science of Nature 105(7–8): 47. DOI: 10.1007/s00114-018-1571-z |
37. | Pagani-Núñez E., Renom M., Mateos-Gonzalez F., Cotín J. & Senar J.C. 2017: The diet of great tit nestlings: Comparing observation records and stable isotope analyses. Basic and Applied Ecology 18: 57–66. DOI: 10.1016/j.baae.2016.11.004 |
38. | Perrins C.M. 2008: Tits and their caterpillar food supply. Ibis 133: 49–54. DOI: 10.1111/j.1474-919X.1991.tb07668.x |
39. | Pilar s k a D., McManus M., Hajek A.E., Herard F., Vega F.E., Pilarski P. et al. 2000: Introduction of the entomopathogenic fungus Entomophaga maimaiga Hum. Shim. and Sop. (Zygomycetes: Entomophthorales) to a Lymantria dispar (L.) (Lepidoptera: Lymantriidae) population in Bulgaria. Anzeiger Fur Schadlingskunde 73(5): 125–126. DOI: 10.1007/BF02956444 |
40. | Porter J. 1997: Colour Identification Guide to Caterpillars of the British Isles. Macrolepidoptera. London, UK: Viking: p. 276. |
41. | R Core Team. 2019: R: A Language and Environment for Statistical Computing. https://www.R-project.org/. |
42. | Sánchez-Bayo F. & Wyckhuys K.A.G. 2019: Worldwide decline of the entomofauna: A review of its drivers. Biological Conservation 232: 8–27. DOI: 10.1016/j.biocon.2019.01.020 |
43. | Schowalter T.D. 2016: Insects as Regulators of Ecosystem Processes. In: Insect Ecology. pp. 511–537. Elsevier. |
44. | Schowalter T.D. Noriega J.A. & Tscharntke T. 2018: Insect effects on ecosystem services—Introduction. Basic and Applied Ecology 26: 1–7. DOI: 10.1016/j.baae.2017.09.011 |
45. | Şekercioğlu Ç.H. 2006: Ecological significance of bird populations. In: J. del Hoyo, A. Elliott, & D. A. Christie (eds.): Handbook of the birds of the world. 11: 15–51. Lynx Edicions, Barcelona, Spain: and BirdLife International, Cambridge, UK. |
46. | Seress G., Hammer T., Bókony V., Vincze E., Preiszner B., Pipoly I. et al. 2018: Impact of urbanization on abundance and phenology of caterpillars and consequences for breeding in an insectivorous bird. Ecological Applications 28(5): 1143–1156. DOI: 10.1002/eap.1730 |
47. | Seress G., Sándor K., Evans K.L. & Liker A. 2020: Food availability limits avian reproduction in the city: An experimental study on great tits Parus major. Journal of Animal Ecology 89(7): 1570–1580. DOI: 10.1111/1365-2656.13211 |
48. | Standovár T., Bán M. & Kézdi P. (eds.). 2017: Erdőállapot-értékelés középhegységi erdeinkben – ROSALIA A Duna-Ipoly Nemzeti Park Igazgatóság tanulmánykötetei 9. Budapest, Hungary: Duna-Ipoly Nemzeti Park Igazgatóság: p. 612 |
49. | Szontagh P. 1962: A gyűrűslepke (Malacosoma neustria L.) tömegszaporodása és károsítása tölgyeseinkben, Erdészeti Kutatások 58(1–3): 125–142. |
50. | Szontagh P. 1975: A fénycsapda hálózat szerepe az erdészeti kártevők prognózisában. Növényvédelem 11(2): 54–57. |
51. | Tallós P. 1966: A fénycsapdák erdővédelmi jelentősége. Az Erdő 15(3): 134-136. Teljes szöveg |
52. | Thomas C.D. & Abery J.C.G. 1995: Estimating rates of butterfly decline from distribution maps: The effect of scale. Biological Conservation 73(1): 59–65. DOI: 10.1016/0006-3207(95)90065-9 |
53. | Thomas J.A. 2004: Comparative Losses of British Butterflies, Birds, and Plants and the Global Extinction Crisis. Science 303(5665): 1879–1881. DOI: 10.1126/science.1095046 |
54. | Török J. 1986: Food segregation in three hole-nesting bird species during the breeding season. Ardea 74: 129–136. |
55. | Török J. 1990: Resource partitioning among three woodpecker species Dendrocopos spp. during the breeding season. Ecography 13(4): 257–264. DOI: 10.1111/j.1600-0587.1990.tb00617.x |
56. | Török J. & Tóth L. 1999: Asymmetric competition between two tit species: a reciprocal removal experiment. Journal of Animal Ecology 68(2): 338–345. DOI: 10.1046/j.1365-2656.1999.00283.x |
57. | Tremblay I., Thomas D., Blondel J., Perret P. & Lambrechts M.M. 2005: The effect of habitat quality on foraging patterns, provisioning rate and nestling growth in Corsican Blue Tits Parus caeruleus. Ibis 147(1): 17–24. DOI: 10.1111/j.1474-919x.2004.00312 |
58. | Valtonen A., Hirka A., Szőcs L., Ayres M.P., Roininen H. & Csóka Gy. 2017: Long-term species loss and homogenization of moth communities in Central Europe. Journal of Animal Ecology 86(4): 730–738. DOI: 10.1111/1365-2656.12687 |
59. | Wainhouse D. & Inward D.J.G. 2016: The influence of climate change on forest insect pests in Britain. FCRN021: 1–10. |
60. | Welti E.A.R., Joern A., Ellison A.M., Lightfoot D.C., Record S., Rodenhouse N. et al. 2021: Studies of insect temporal trends must account for the complex sampling histories inherent to many long-term monitoring efforts. Nature Ecology & Evolution 5(5): 589–591. DOI: 10.1038/s41559-021-01424-0 |
61. | Zúbrik M., Barta M., Pilarska D., Goertz D., Úradník M., Galko J. et al. 2014: First record of Entomophaga maimaiga (Entomophthorales: Entomophthoraceae) in Slovakia. Biocontrol Science and Technology 24(6): 710–714. DOI: 10.1080/09583157.2014.883362 |
62. | Zúbrik M., Hajek A., Pilarska D., Špilda I., Georgiev G., Hrašovec B. et al. 2016: The potential for Entomophaga maimaiga to regulate gypsy moth Lymantria dispar (L.) (Lepidoptera: Erebidae) in Europe. Journal of Applied Entomology 140(8): 565–579. DOI: 10.1111/jen.12295 |
63. | Zúbrik M., Špilda I., Pilarska D., Hajek A.E., Takov D., Nikolov C. et al. 2018: Distribution of the entomopathogenic fungus Entomophaga maimaiga (Entomophthorales: Entomophthoraceae) at the northern edge of its range in Europe. Annals of Applied Biology 173(1): 35–41. DOI: 10.1111/aab.12431 |