1. | Baird N.A., Etter P.D., Atwood T.S., Currey M.C., Shiver A.L., Lewis Z.A., Selker E.U., Cresko W.A. & Johnson E.A. 2008: Rapid SNP Discovery and Genetic Mapping Using Sequenced RAD Markers. PLoS ONE 3(10): e3376. DOI: 10.1371/journal.pone.0003376 |
2. | Batley J. & Edwards D. 2007: SNP Applications in Plants. In: Oraguzie N.C., Rikkerink E.H.A., Gardiner S.E. & De Silva H.N. (eds.): Association Mapping in Plants. Springer, New York, NY, USA. 95–102., DOI: 10.1007/978-0-387-36011-9_6 |
3. | Beckage B., Osborne B., Gavin D.G., Pucko C., Siccama T. & Perkins T. 2008: A rapid upward shift of a forest ecotone during 40 years of warming in the Green Mountains of Vermont. Proceedings of the National Academy of Sciences 105: 4197. DOI: 10.1073/pnas.0708921105 |
4. | Blanc‑Jolivet C., Bakhtina S., Yanbaev R., Yanbaev Y., Mader M., Guichoux E. & Degen B. 2020: Development of new SNPs loci on Quercus robur and Quercus petraea for genetic studies covering the whole species’ distribution range. Conservation Genetics Resources 12: 597–600. DOI: 10.1007/s12686-020-01141-z |
5. | Bordács S., Popescu F., Slade D., Csaikl U.M., Lesur I., Borovics A., Kézdy P., König A.O., Gömöry D., Brewer S., Burg K. & Petit R.J. 2002: Chloroplast DNA variation of white oaks in northern Balkans and in the Carpathian Basin. Forest Ecology and Management 156(1-3): 197-209. DOI: 10.1016/S0378-1127(01)00643-0 |
6. | Borovics A. & Mátyás Cs. 2013: Decline of genetic diversity of sessile oak at the retracting (xeric) limits. Annals of Forest Science 70: 835–844. DOI: 10.1007/s13595-013-0324-6 |
7. | Bradbury P.J., Zhang Z., Kroon D.E., Casstevens T.M., Ramdoss Y. & Buckler E.S. 2007: TASSEL: software for association mapping of complex traits in diverse samples. Bioinformatics 23: 2633–2635. DOI: 10.1093/bioinformatics/btm308 |
8. | Catchen J., Hohenlohe P.A., Bassham S., Amores A. & Cresko W.A. 2013: Stacks: an analysis tool set for population genomics. Molecular Ecology 22: 3124–3140. |
9. | Chakraborty D., Móricz N., Rasztovits E., Dobor L. & Schueler S. 2021: Provisioning forest and conservation science with high‑resolution maps of potential distribution of major European tree species under climate change. Annals of Forest Science 78: 26. DOI: 10.1007/s13595-021-01029-4 |
10. | Czúcz B., Gálhidy L. & Mátyás Cs. 2013: A bükk és a kocsánytalan tölgy elterjedésének szárazsági határa. Erdészettudományi Közlemények, 3(1): 39-53. Teljes szöveg |
11. | Excoffier L., Hofer T. & Foll M. 2009: Detecting loci under selection in a hierarchically structured population. Heredity 103: 285–298. DOI: 10.1038/hdy.2009.74 |
12. | Foll M. & Gaggiotti O. 2008: A genome-scan method to identify selected loci appropriate for both dominant and codominant markers: a Bayesian perspective. Genetics 180: 977–993. DOI: 10.1534/genetics.108.092221 |
13. | Frichot E., Schoville S.D., Bouchard G. & François O. 2013: Testing for associations between loci and environmental gradients using latent factor mixed models. Molecular Biology and Evolution 30: 1687–1699. DOI: 10.1093/molbev/mst063 |
14. | García C., Guichoux E. & Hampe A. 2018: A comparative analysis between SNPs and SSRs to investigate genetic variation in a juniper species (Juniperus phoenicea ssp. turbinata). Tree Genetics & Genomes 14: 87. DOI: 10.1007/s11295-018-1301-x |
15. | Gencsi L. & Vancsura R. 1997: Dendrológia. Mezőgazda Kiadó, Budapest, 240–246. |
16. | Goudet J. 2005: Hierfstat, a package for R to compute and test hierarchical F‐statistics. Molecular Ecology Notes 5: 184–186. DOI: 10.1111/j.1471-8286.2004.00828.x. |
17. | Hamrick J.L., Godt M.J.W. & Sherman-Broyles, S.L. 1992: Factors influencing levels of genetic diversity in woody plant species. New Forests 6: 95–124. |
18. | Hijmans R.J., Cameron S.E., Parra J.L., Jones P.G. & Jarvis A. 2005: Very high resolution interpolated climate surfaces for global land areas. International Journal of Climatology 25: 1965–1978. DOI: 10.1002/joc.1276 |
19. | Járó Z. 1966: A fafajok hazai elterjedése. In: Babos I., Horváthné Proszt S., Járó Z., Király L., Szodfridt I. & Tóth B. 1966: Erdészeti termőhelyfeltárás és térképezés. Akadémiai Kiadó, Budapest, 136 p. |
20. | Járó Z. 1972: Az erdészeti termőhelyértékelés rendszere. In: Danszky I. (ed.) 1972: Erdőművelés - Irányelvek, eljárások, technológiák I. – Erdőfelújítás, erdőtelepítés, fásítás. Mezőgazdasági Könyvkiadó Vállalat, Budapest, 53–71. |
21. | Jombart T. & Ahmed I. 2011: adegenet 1.3-1: new tools for the analysis of genome-wide SNP data. Bioinformatics 27: 3070–3071. DOI: 10.1093/bioinformatics/btr521 |
22. | Kamvar Z.N., Tabima J.F. & Grünwald N.J. 2014: Poppr: an R package for genetic analysis of populations with clonal, partially clonal, and/or sexual reproduction. PeerJ 2: e281. DOI: 10.7717/peerj.281 |
23. | Keresztesi B. 1971: Magyar erdők. Akadémiai Kiadó, Budapest, 79 p. |
24. | Konar A., Choudhury O., Bullis R., Fiedler L., Kruser J.M., Stephens M.T., Gailing O., Schlarbaum S., Coggeshall M.V., Staton M.E., Carlson J.E., Emrich S. & Romero-Severson J. 2017: High-quality genetic mapping with ddRADseq in the non-model tree Quercus rubra. BMC Genomics (2017) 18: 417. DOI: 10.1186/s12864-017-3765-8 |
25. | Lê S., Josse J. & Husson F. 2008: FactoMineR: an R package for multivariate analysis. Journal of Statistical Software 25(1): 1–18. DOI: 10.18637/jss.v025.i01 |
26. | Li H. 2013: Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. arXiv preprint arXiv:1303.3997. DOI: 10.48550/arXiv.1303.3997 |
27. | Luu K., Bazin E. & Blum M.G. 2017: pcadapt: an R package to perform genome scans for selection based on principal component analysis. Molecular Ecology Resources 17: 67–77. DOI: 10.1111/1755-0998.12592 |
28. | Machar I., Vlckova V., Bucek A., Vozenilek V., Salek L. & Jerabkova L. 2017: Modelling of Climate Conditions in Forest Vegetation Zones as a Support Tool for Forest Management Strategy in European Beech Dominated Forests. Forests 8(3): 82. DOI: 10.3390/f8030082 |
29. | Majer A. 1972: Célállományok jellemzése. In: Danszky I. (ed.) 1972: Erdőművelés - Irányelvek, eljárások, technológiák I. – Erdőfelújítás, erdőtelepítés, fásítás. Mezőgazdasági Könyvkiadó Vállalat, Budapest, 102–103. |
30. | Marees A.T., de Kluiver H., Stringer S., Vorspan F., Curis E., Marie‐Claire C. & Derks E.M. 2018: A tutorial on conducting genome‐wide association studies: Quality control and statistical analysis. International Journal of Methods in Psychiatric Research 27: e1608. DOI: 10.1002/mpr.1608 |
31. | Masoudi-Nejad A., Tonomura K., Kawashima S., Moriya Y., Suzuki M., Itoh M. & Goto S. 2006: EGassembler: online bioinformatics service for large-scale processing, clustering and assembling ESTs and genomic DNA fragments. Nucleic Acids Research 34: W459-W462. DOI: 10.1093/nar/gkl066 |
32. | Mátyás Cs. 1999: Molekuláris markerek alkalmazása az erdészeti növények nemesítésében. In: Hajósné Novák M. (ed.): Genetikai variabilitás a növénynemesítésben. Mezőgazda Kiadó, Budapest, 65-78. |
33. | Móricz N., Rasztovits E., Gálos B., Berki I., Eredics A. & Loibl W. 2013: Modelling the Potential Distribution of Three Climate Zonal Tree Species for Present and Future Climate in Hungary. Acta Silvatica et Lignaria Hungarica 9: 85–96. DOI: 10.2478/aslh-2013-0007 Teljes szöveg |
34. | Nagy K. (ed.) 2021: Nemzeti szisztematikus erdőleltár. Nemzeti Földügyi Központ, Erdészeti Főosztály, Budapest ISBN 978-615-6287-00-7 |
35. | Nazareno A.G., Bemmels J.B., Dick C.W, & Lohmann L.G. 2017: Minimum sample sizes for population genetics: an empirical study from an Amazonian plant species. Molecular Ecology Resources 17(6): 1136-1147. DOI: 10.1111/1755-0998.12654 |
36. | Nei M. 1973: Analysis of gene diversity in subdivided populations. Proceedings of the National Academy of Sciences 70:3321-3. DOI: 10.1073/pnas.70.12.3321 |
37. | Petit R.J., Brewer S., Bordács S., Burg K., Cheddadi R., Coart E., Cottrell J., Csaikl U.M., Deans J.D., Fineschi S., Finkeldey R., Glaz I., Goicoechea P.G., Jensen J.S., König A.O., Lowe A.J., Madsen S.F., Mátyás G., Munro R.C., Popescu F., Slade D., Tabbener H., van Dam B., Ziegenhagen B., de Beaulieu J.L. & Kremer A. 2002: Identification of refugia and postglacial colonisation routes of European white oaks based on chloroplast DNA and fossil pollen evidence. Forest Ecology and Management 156(1-3): 49-74. DOI: 10.1016/S0378-1127(01)00634-X |
38. | Plomion C., Aury J.M., Amselem J., Leroy T., Murat F., Duplessis S. & Lesur I. 2018: Oak genome reveals facets of long lifespan. Nature Plants 4: 440–452. DOI: 10.1111/1755-0998.12425 |
39. | R Core Team 2021: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/. |
40. | Rafalski J. A. 2002: Novel genetic mapping tools in plants: SNPs and LD-based approaches. Plant Science 162: 329–333. DOI: 10.1016/S0168-9452(01)00587-8 |
41. | Raj A., Stephens M. & Pritchard J.K. 2014: fastSTRUCTURE: variational inference of population structure in large SNP data sets. Genetics 197: 573–589. DOI: 10.1093/genetics/197.2.NP |
42. | Rasztovits E., Móricz N., Berki I., Pötzelsberger E. & Mátyás Cs. 2012: Evaluating the performance of stochastic distribution models for European beech at low-elevation xeric limits. Időjárás 116(3): 173–194. |
43. | Robinson J.T., Thorvaldsdóttir H., Winckler W., Guttman M., Lander E.S., Getz G. & Mesirov J.P. 2011: Integrative genomics viewer. Nature Biotechnology 29: 24–26. DOI: 10.1038/nbt.1754 |
44. | Rochette N.C., Rivera‐Colón A.G. & Catchen J.M. 2019: Stacks 2: Analytical methods for paired‐end sequencing improve RADseq‐based population genomics. Molecular Ecology 28: 4737–4754. DOI: 10.1111/mec.15253 |
45. | Rubel F., Brugger K., Haslinger K. & Auer I. 2017: The climate of the European Alps: Shift of very high resolution Köppen-Geiger climate zones 1800–2100. Meteorologische Zeitschrift 26(2): 115–125. |
46. | Shastry B.S. 2009: SNPs: Impact on Gene Function and Phenotype. In: Komar A.A. (ed.): Single Nucleotide Polymorphisms. Methods in Molecular Biology. Humana Totowa, NJ, 3–4. eBook ISBN: 978-1-60327-411-1 |
47. | Slade D., Kvorc Z.S., Ballian D., Gracan J. & Papes D. 2008: The Chloroplast DNA Polymorphisms of White Oaks of Section Quercus in The Central Balkans. Silvae Genetica 57(1-6): 227-234. DOI: 10.1515/sg-2008-0035 |
48. | Stojanović D.B., Matović B., Orlović S., Kržič A., Trudić B., Galić Z., Stojnić S. & Pekeč S. 2014: Future of the Main Important Forest Tree Species in Serbia from the Climate Change Perspective. South-east European Forestry 5(2): 117–124. DOI: 10.15177/seefor.14-16 |
49. | Title P.O. & Bemmels J.B. 2018: ENVIREM: an expanded set of bioclimatic and topographic variables increases flexibility and improves performance of ecological niche modeling. Ecography 41: 291–307. DOI: 10.1111/ecog.02880 |
50. | Tóth E.G., Köbölkuti Z.A., Cseke K., Kámpel J.D., Takács R., Tomov V.T., Ábrán P., Stojnic S., Vastag E., Mataruga M., Daničić V., Tahirukaj E., Zhelev P., Orlovic S., Benke A. & Borovics A. 2021: A genomic dataset of singlenucleotide polymorphisms generated by ddRAD tag sequencing in Q. petraea (Matt.) Liebl. populations from Central-Eastern Europe and Balkan Peninsula. Annals of Forest Science 78: 43. DOI: 10.1007/s13595-021-01051-6 |
51. | Ujváriné Jármay É. 1988: A nemesítési kutatásokról. Az Erdő 37(10): 436–440. Teljes szöveg |
52. | Winter D.J. 2017: rentrez: An R package for the NCBI eUtils API. The R Journal 9(2): 520–526. ISSN 2073-4859 |
53. | Wu T.D. & Watanabe C.K. 2005: GMAP: a genomic mapping and alignment program for mRNA and EST sequences. Bioinformatics 21: 1859–1875. DOI: 10.1093/bioinformatics/bti310 |
54. | Xiong S., Hao Y., Rao S., Huang W., Hu B. & Wang Y. 2009: Effects of cutoff thresholds for minor allele frequencies on HapMap resolution: A real dataset-based evaluation of the Chinese Han and Tibetan populations. Chinese Science Bulletin 54: 2069–2075. DOI: 10.1007/s11434-009-0302-4 |
55. | Zanetto A. & Kremer A. 1995: Geographical structure of gene diversity in Quercus petraea (Matt.) Liebl. I. Monolocus patterns of variation. Heredity 75(5): 506–517. DOI: 10.1038/hdy.1995.167 |