1. | Allen C.D., Breshears D.D. & McDowell N.G. 2015: On underestimation of global vulnerability to tree mortality and forest die-off from hotter drought in the Anthropocene. Ecosphere 6: 1–55. DOI: 10.1890/ES15-00203.1 |
2. | Anderegg W.R.L., Hicke J.A., Fisher R.A., Allen C.D., Aukema J., Bentz B., Hood S., Lichstein J.W., Macalady A.K., McDowell N., Pan Y.D., Raffa K., Sala, Shaw J.D., Stephenson N.L., Tague C. & Zeppel M. 2015: Tree mortality from drought, insects, and their interactions in a changing climate. New Phytologist 208(3): 674-683. DOI: 10.1111/nph.13477 |
3. | Barbet-Massin M., Jiguet F., Albert C.H. & Thuiller W. 2012: Selecting pseudo-absences for species distribution models: how, where and how many? Methods in Ecology and Evolution 3: 327–338. DOI: 10.1111/j.2041-210X.2011.00172.x |
4. | Bodribb T.J., Powers J., Cochard H. & Choat B. 2020: Hanging by a thread? Forests and drought. Science 368(6488): 261–266. DOI: 10.1126/science.aat7631. |
5. | Buras A., Schunk C., Zeiträg C., Herrmann C., Kaiser L., Lemme H. et al. 2018: Are Scots pine forest edges particularly prone to drought-induced mortality? Environ. Res. Lett. 13: 025001. DOI: 10.1088/1748-9326/aaa0b4 |
6. | Bura s A. & Menzel A. 2019: Projecting Tree Species Composition Changes of European Forests for 2061–2090 Under RCP 4.5 and RCP 8.5 Scenarios. Front. Plant Sci. 9:1986. doi: 10.3389/fpls.2018.01986 |
7. | Breiman L. 2001: Random forests. Statistics Department. University of California, Berkeley. pp.32. https://www.stat.berkeley.edu/~breiman/randomforest2001.pdf |
8. | Cailleret M., Jansen S., Robert E.M.R., Desoto L., Aakala T., Antos J.A. et al. 2017: A synthesis of radial growth patterns preceding tree mortality. Glob. Change Biol. 23: 1675–1690. DOI: 10.1111/gcb.13535 |
9. | Chakraborty D., Wang T., Andre K., Konnert M., Lexer M.J., Matulla C. & Schüler S. 2015: Selecting populations for non-analogous climate conditions using universal response functions: The case of Douglas-fir in central Europe. PloS one 10(8), e0136357 |
10. | Choat B., Brodribb T.J., Brodersen C.R., Duursma R.A., López R. & Medlyn B.E. 2018: Triggers of tree mortality under drought. Nature 558: 531–539. DOI: 10.1038/s41586-018-0240-x |
11. | Corlett R.T., & Westcott D.A. 2013: Will plant movements keep up with climate change? Trends in Ecology & Evolution 28(8): 482–488. DOI: 10.1016/j.tree.2013.04.003 |
12. | Czúcz B., Gálhidy L. & Mátyás C. 2011: Present and forecasted xeric climatic limits of beech and sessile oak distribution at low altitudes in Central Europe. Annals of Forest Science 68: 99–108. DOI: 10.1007/s13595-011-0011-4 |
13. | Darwish A., Leukert K. & Reinhardt W. 2003: „Image segmentation for the purpose of object-based classification,” IGARSS 2003. 2003 IEEE International Geoscience and Remote Sensing Symposium. Proceedings (IEEE Cat. No.03CH37477), 2039-2041, DOI: 10.1109/IGARSS.2003.1294332 |
14. | Fekete I., Lajtha K., Kotroczó Z., Várbíró G., Varga C., Tóth J.A. et al. 2017: Long-term effects of climate change on carbon storage and tree species composition in a dry deciduous forest. Glob. Change Biol. 23: 3154–3168. DOI: 10.1111/gcb.13669 |
15. | Fischer G., Nachtergaele F., Prieler S., van Velthuizen H.T., Verelst L., & Wiberg D. 2008: Global Agro-ecological Zones Assessment for Agriculture (GAEZ 2008). IIASA, Laxenburg, Austria and FAO, Rome, Italy. |
16. | Führer E., Horváth L., Jagodics A., Machon A. & Szabados I. 2011: Application of a new aridity index in Hungarian forestry practice. Időjárás 115(3): 103–118. |
17. | Gálos B., Führer E., Czimber K., Gulyás K., Bidló A., Hänsler A., Jacob D. & Mátyás Cs. 2015: Climatic threats determining future adaptive forest management – a case study of Zala County. Idõjárás 119(4): 425–441. |
18. | Hargreaves G.H. & Allen R.G. 2003: History and Evaluation of Hargreaves Evapotranspiration Equation. Journal of Irrigation and Drainage Engineering 129(1): 53–63. DOI: 10.1061/(ASCE)0733-9437(2003)129:1(53) |
19. | Halofsky J.E., Peterson D.L. & Prendeville H.R. 2018: Assessing vulnerabilities and adapting to climate change in northwestern U.S. forests. Clim. Change 146: 89–102. DOI: 10.1007/s10584-017- 1972-6 |
20. | Hanewinkel M., Cullmann D., Schelhaas M.J. et al. 2013: Climate change may cause severe loss in the economic value of European forest land. Nature Clim Change 3: 203–207. DOI: 10.1038/nclimate1687 |
21. | Hengl T., de Jesus J.M., MacMillan R.A., Batjes N.H., Heuvelink G.B.M. et al. 2014: SoilGrids1km — Global Soil Information Based on Automated Mapping. PLoS ONE 9(8): e105992. DOI: 10.1371/journal.pone.0105992 |
22. | Higgins S.I., Larcombe M.J., Beeton N.J., Conradi T. & Nottebrock H. 2020: Predictive ability of a process-based versus a correlative species distribution model. Ecol Evol. 10: 11043–11054. DOI: 10.1002/ece3.6712 |
23. | Illés G. & Móricz N. 2022: Species distribution of nine European tree species. DOI: 10.6084/m9.figshare.19614435.v1 |
24. | Járó Z. 1972: A termõhely fogalma. In: Danszky I. (ed.): Erdőművelés I. 47–87. |
25. | Kern A., Marjanović H., Csóka Gy., Móricz N., Pernek M., Hirka A., Matošević D., Paulin M. & Kovač G. 2021: Detecting the oak lace bug infestation in oak forests using MODIS and meteorological data. Agricultural and Forest Meteorology 306(1): 108436. DOI: 10.1016/j.agrformet.2021.108436 |
26. | Kuuluvainen T. 2016: Conceptual models of forest dynamics in environmental education and management: keep it as simple as possible, but no simpler. For. Ecosyst. 3: 18. DOI: 10.1186/s40663-016-0075-6 |
27. | Mauri A.; Strona G. & San-Miguel-Ayanz J. 2016: A high-resolution pan-European tree occurrence dataset. figshare. Collection. DOI: 10.6084/m9.figshare.c.3288407.v1 |
28. | Mauri A., Strona G. & San-Miguel-Ayanz J. 2017: EU-Forest, a high-resolution tree occurrence dataset for Europe. Sci Data 4, 160123 (2017) DOI: 10.1038/sdata.2016.123 |
29. | Marchi M., Castellanos-Acuna D., Hamann A., Wang T., Ray D. & Menzel A. 2020a: ClimateEU, scale-free climate normals, historical time series, and future projections for Europe. Scientific Data 7: 428. DOI: 10.1038/s41597-020-00763-0 |
30. | Marchi M., Castellanos-Acuña D., Hamann A., Wang T., Ray D. & Menzel A. 2020: ClimateEU: Scale-free climate normals, historical time series, and future projections for Europe. figshare. Collection. DOI: 10.6084/m9.figshare.c.4846122.v1 |
31. | Mátyás Cs., Berki I., Bidló A., Csóka Gy., Czimber K., Führer E., Gálos B,. Gribovszki Z., Illés G., Hirka A. & Somogyi Z. 2018: Sustainability of forest cover under climate change on the temperate-continental xeric limits. Forests 9: 489. DOI: 10.3390/f9080489. |
32. | Mátyás Cs., Beran F., Dostál J., Čáp J., Fulín M., Vejpustková M., Božič G., Balázs P. & Frýdl J. 2021: Surprising Drought Tolerance of Fir (Abies) Species between Past Climatic Adaptation and Future Projections Reveals New Chances for Adaptive Forest Management. Forests 12: 821. DOI: 10.3390/f12070821 |
33. | Rajczak J. & Schär C. 2017: Projections of future precipitation extremes over Europe: A multimodel assessment of climate simulations. Journal of Geophysical Research: Atmospheres 122: 10,773–10,800. DOI: 10.1002/2017JD027176 |
34. | Rehschuh R., Mette T., Menzel A. & Buras A. 2017: Soil properties affect the drought susceptibility of Norway spruce. Dendrochronologia 45: 81–89. DOI: 10.1016/j.dendro.2017.07.003 |
35. | Sallmannshofer M., Chakraborty D., Vacik H., Illés G., Löw M., Rechenmacher A., Lapin K., Ette S., Stojanovic D., Kobler A. et al. 2021: Continent-Wide Tree Species Distribution Models May Mislead Regional Management Decisions: A Case Study in the Transboundary Biosphere Reserve Mura-Drava- Danube. Forests 12: 330. DOI: 10.3390/f12030330 |
36. | Scherrer D., Massy S., Meier S., Vittoz P. & Guisan A. 2017: Assessing and predicting shifts in mountain forest composition across 25 years of climate change. Divers. Distrib. 23: 517–528. DOI: 10.1111/ddi. 12548 |
37. | Schuldt B., Buras A., Arend M., Vitasse Y., Beierkuhnlein C., Damm A., Gharun M., Grams T.E.E., Hauck M., Hajek P., Hartmann H., Hiltbrunner E., Hoch G., Holloway-Phillips M., Körner C., Larysch E., Lübbe T., Nelson D.B., Rammig A., Rigling A., Rose L., Ruehr N.K., Schumann K., Weiser F., Werner C., Wohlgemuth T., Zang C.S. & Kahmen A 2020: A first assessment of the impact of the extreme 2018 summer drought on Central European forests. Basic Appl Ecol 45: 86–103. DOI: 10.1016/j.baae.2020.04.003. |
38. | Senf C., Buras A., Zang C.S. Ramming A. & Seidl R. 2020: Excess forest mortality is consistently linked to drought across Europe. Nat Commun 11: 6200. DOI: 10.1038/s41467-020-19924-1 |
39. | Sousa-Silva R., Verbist B., Lomba Â., Valent P., Suškevics M., Picard O. et al. 2018: Adapting forest management to climate change in Europe: linking perceptions to adaptive responses. For. Policy Econ. 90: 22–30. DOI: 10.1016/j. forpol.2018.01.00 |
40. | Spinoni J., Naumann G., Vogt J. & Barbosa P. 2015: European drought climatologies and trends based on a multiindicator approach. Glob Planet Change. 127: 50–57. DOI: 10.1016/j.gloplacha.2015.01.012. |
41. | Thurm E.A., Hernandez L., Baltensweiler A., Ayan S., Rasztovits E., Bielak K., Zlatanov T.M., Hladnik D., Balic B., Freudenschuss A. et al. 2018: Alternative tree species under climate warming in managed European forests. For. Ecol. Manag. 430: 485–497. |
42. | Walentowski H., Falk W., Mette T., Kunz J., Bräuning A., Meinardus C .et al. 2017: Assessing future suitability of tree species under climate change by multiple methods: a case study in southern Germany. Ann. For. Res. 60: 101–126. DOI: 10.15287/afr.2016.789 |
43. | Wunderlich R.F., Lin Y-P., Anthony J. & Petway J.R. 2019: Two alternative evaluation metrics to replace the true skill statistic in the assessment of species distribution models. Nature Conservation 35: 97–116. DOI: 10.3897/natureconservation.35.33918 |
44. | Zscheischler J. & Seneviratne S.I. 2017: Dependence of drivers affects risks associated with compound events. Sci. Adv. 3: e1700263. DOI: 10.1126/sciadv. 1700263 |
45. | Zscheischler J., Westra S., van den Hurk BJJM, Seneviratne SI, Ward PJ, Pitman A et al. 2018: Future climate risk from compound events. Nat. Clim. Change 8: 469–477. DOI: 10.1038/s41558-018-0156-3 |