Erdészettudományi Közlemények / 11. évfolyam / 1. szám / 27-40. oldal
előző | következő

Fiatal somogyi kocsánytalan tölgyek és csertölgyek szárazságérzékenységének összehasonlító vizsgálata

Németh Tamás Márton, Szabó Orsolya és Móricz Norbert

Kapcsolat a szerzőkkel

Levelező szerző: Németh Tamás Márton

Cím: H-9400 Sopron, Paprét 17.

e-mail cím: nemeth.tamas.marton[at]uni-sopron.hu

Kivonat

Jelen munkánkban somogyi kocsánytalan tölgyek és csertölgyek (Quercus petraea, Q. cerris) aszályra adott növekedési reakcióját vizsgáltuk, egy csapadék gradiens mentén. Az értékeléshez 136 évgyűrűmintát használtunk fel, valamint az aszályérzékenység meghatározásához dendroökológiai számításokat végeztünk. A vízhiányt a talaj vízháztartásán alapuló nedvesség-stressz index felhasználásával becsültük meg. Az eredmények alapján, mindkét fafaj évgyűrű képzését leginkább az adott év nyári csapadék mennyisége határozta meg, de a két fafaj eltérő stratégiát folytat az aszályos időszakok átvészelésére. A csertölgy érzékenyebben reagált az aszályokra, mint a kocsánytalan tölgy, amely a faj aszályokkal szembeni kisebb ellenállási és nagyobb regenerálódási képességéből adódott. A csertölgy esetén a növekedés visszaesése egyenesen arányos volt a nedvesség-stressz érték növekedésével, míg a kocsánytalan tölgy az egyre erősödő szárazságra erőteljesebb növedék visszaesést mutatott, ami a faj kisebb mértékű rugalmasságára utal. Mindezek alapján úgy látszik, hogy a csertölgy jobban ellenáll az aszályoknak, mint a kocsánytalan tölgy, így akár versenyképesebb is lehet az előre jelzett klímaváltozás kapcsán.

Kulcsszavak: kocsánytalan tölgy, csertölgy, dendrokronológia, aszály

  • Árvai M., Morgós A. & Kern Z. 2018: Growth-climate relations and the enhancement of drought signals in Pedunculate oak (Quercus robur L.) tree-ring chronology in Eastern Hungary. IForest 11(2): 267–274. DOI: 10.3832/ifor2348-011
  • Bunn A. G. 2008: A dendrochronology program library in R (dplR). Dendrochronologia 26(2): 115–124. DOI: 10.1016/j.dendro.2008.01.002
  • Busotti F. & Pollastrini M. 2017: Traditional and novel indicators of climate change impacts on European forest trees. Forests 8(4): 137. DOI: 10.3390/f8040137
  • Candel-Pérez D., Linares J.C., Vinegla B. & Lucas-Borja M.E. 2012: Assessing climate-growth relationships under contrasting stands of co-occurring Iberian pines along an altitudinal gradient. Forest Ecology and Management 274: 48–57. DOI: 10.1016/j.foreco.2012.02.010
  • Cavin L. & Jump A.S. 2017: Highest drought sensitivity and lowest resistance to growth suppression are found in the range core of the tree Fagus sylvatica L. not the equatorial range edge. Global Change Biology 23(1): 362–379. DOI: 10.1111/gcb.13366
  • Ciceu A., Popa I., Leca S., Pitar D., Chivulescu S. & Badea O. 2020: Climate change effects on tree growth from Romanian forest monitoring Level II plots. Science of the Total Environment 698: 134129. DOI: 10.1016/j.scitotenv.2019.134129
  • Clark J.S., Iverson L., Woodall C.W., Allen C.D., Bell D. M., Bragg D. C., D’Amato A.W., Davis F.W., Hersh M.H., Ibañez I., Jackson S.T., Matthews S., Pederson N., Peters M., Schwartz M.W., Waring K.M. & Zimmermann N.E. 2016: The impacts of increasing drought on forest dynamics, structure, and biodiversity in the United States. Global Change Biology 22(7): 2329–2352. DOI: 10.1111/gcb.13160
  • Cook R.D. & Weisberg S. 1982: Residuals and influence in regression. Chapman and Hall New York, 17–86.
  • Cufar K., Grabner M., Morgós A., del Castillo E.M., Merela M. & de Luis M. 2014: Common climatic signals affecting oak tree-ring growth in SE Central Europe. Trees 28(5): 1267–1277. DOI: 10.1007/s00468-013-0972-z
  • Csóka Gy. & Hirka A. 2009: A gyapjaslepke (Lymantria dispar L.) legutóbbi tömegszaporodása Magyarországon. Növényvédelem 45(4): 196–201.
  • Führer E., Horváth L., Jagodics A., Machon A. & Szabados I. 2011: Application of a new aridity index in Hungarian forestry practice. Időjárás 115(3): 103–118.
  • Gazol A., Camarero J. J., Anderegg W.R.L. & Vicente‐Serrano S.M. 2017: Impacts of droughts on the growth resilience of Northern Hemisphere forests. Global Ecology and Biogeography 26(2): 166–176. DOI: 10.1111/geb.12526
  • Granier A., Bréda N., Biron P. & Villette S. 1999: A lumped water balance model to evaluate duration and intensity of drought constraints in forest stands. Ecological Modelling 116(2-3): 269–283. DOI: 10.1016/S0304-3800(98)00205-1
  • Gulyás K., Móricz N., Rasztovits E., Horváth A., Balázs P. & Berki I. 2019: Accelerated height growth versus mortality of Quercus petraea (Matt.) Liebl. in Hungary. South-east European forestry 10(1), 1–7. DOI: 10.15177/seefor.19-01
  • Härdtle W., Niemeyer T., Assmann T., Aulinger A., Fichtner A., Lang A., Leuschner C., Neuwirth B., Pfister L., Quante M., Ries C., Schuldt A. & von Oheimb G. 2013: Climatic responses of tree-ring width and δ13C signatures of sessile oak (Quercus petraea Liebl.) on soils with contrasting water supply. Plant Ecology 214(9): 1147–156. DOI: 10.1007/s11258-013-0239-1
  • Hirka A. 2006: Várható erdőkárok 2006-ban. Erdészeti Lapok 141(4): 117–119. Teljes szöveg
  • Hoffmann N., Schall P., Ammer C., Lede, B. & Vor T. 2018: Drought sensitivity and stem growth variation of nine alien and native tree species on a productive forest site in Germany. Agricultural and Forest Meteorology 256-257: 431–444. DOI: 10.1016/j.agrformet.2018.03.008
  • Holmes R.L. 1983: Computer-assisted quality control in tree-ring dating and measurement. Tree-Ring Bulletin 43: 69–78.
  • IPCC 2018: Global warming of 1.5°C. An IPCC Special Report on the impacts of global warming of 1.5°C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty. In Press
  • Linares J.C. & Tiscar P.A. 2010: Climate change impacts and vulnerability of the southern populations of Pinus nigra subsp. salzmannii. Tree Physiology 30(7): 795–806. DOI: 10.1093/treephys/tpq052
  • Lloret F., Keeling E.G. & Sala A. 2011: Components of tree resilience: Effects of successive low-growth episodes in old ponderosa pine forests. Oikos 120(12): 1909–1920. DOI: 10.1111/j.1600-0706.2011.19372.x
  • Martínez-Vilalta J., Poyatos R., Aguadé D., Retana J. & Mencuccini M. 2014: A new look at water transport regulation in plants. New Phytologist 204(1): 105–115. DOI: 10.1111/nph.12912
  • Mátyás Cs., Berki I., Bidló A., Csóka Gy., Czimber K., Führer E., Gálos B., Gribovszki Z., Illés G., Hirka A. & Somogyi Z. 2018: Sustainability of forest cover under climate change on the temperate-continental xeric limits. Forests 9: 489. DOI: 10.3390/f9080489
  • McCarthy M.C. & Enquist B.J. 2007: Consistency between an allometric approach and optimal partitioning theory in global patterns of plant biomass allocation. Functional Ecology 21(4): 713–720. DOI: 10.1111/j.1365-2435.2007.01276.x
  • Mészáros I., Kanalas P., Fenyvesi A., Kis J., Nyitrai B., Szőllősi E., Oláh V., Demeter Z., Lakatos Á. & Ander I. 2011: Diurnal and seasonal changes in stem radius increment and sap flow density indicate different responses of two co-existing oak species to drought stress. Acta Silvatica et Lignaria Hungarica 7: 97–108. Teljes szöveg
  • Mészáros I., Veres S., Szőllősi E. Koncz P. Kanalas, P. & Oláh V. 2008: Responses of some ecophysiological traits of Sessile oak (Quercus petraea) to drought stress and heat wave in growing season of 2003. Acta Biologica Szegediensis 52(1): 107–109.
  • Michelot A., Simard S., Rathgeber C., Dufrêne E. & Damesin C. 2012: Comparing the intra-annual wood formation of three European species (Fagus sylvatica, Quercus petraea and Pinus sylvestris) as related to leaf phenology and non-structural carbohydrate dynamics. Tree Physiology 32(8): 1033–1045. DOI: 10.1093/treephys/tps052
  • Mirfenderesgi G., Matheny A.M. & Bohrer G. 2019: Hydrodynamic trait coordination and cost-benefit trade-offs throughout the isohydric-anisohydric continuum in trees. Ecohydrology 12(1): e2041. DOI: 10.1002/eco.2041
  • Misi D. & Náfrádi K. 2017: Growth response of Scots pine to changing climatic conditions of the last 100 years: a case study from Western Hungary. Trees 31(3): 919–928. DOI: 10.1007/s00468-016-1517-z
  • Moreno A. & Hasenauer H. 2015: Spatial downscaling of European climate data. International Journal of Climatology 36(3): 1444–1458. DOI: 10.1002/joc.4436
  • Móricz N., Garamszegi B., Rasztovits E., Bidló A., Horváth A., Jagicza A., Illés G., Vekerdy Z., Somogyi Z. & Gálos B. 2018: Recent drought-induced vitality decline of Black Pine (Pinus nigra Arn.) in South-West Hungary – Is this drought-resistant species under threat by climate change? Forests 9: 414. DOI: 10.3390/f9070414
  • Nardini A., Lo Gullo M.A. & Saelleo S. 1999: Competitive strategies for water availability in two Mediterranean Quercus species. Plant, Cell & Environment 22(1): 109–116. DOI: 10.1046/j.1365-3040.1999.00382.x
  • Peltier D.M.P., Fell M. & Ogle K. 2016: Legacy effects of drought in the southwestern United States: A multi-species synthesis. Ecological Monographs 86(3): 312–326. DOI: 10.1002/ecm.1219
  • Pretz s c h H., Schütze G. & Uhl E. 2012a: Resistance of European tree species to drought stress in mixed versus pure forests: evidence of stress release by inter‐specific facilitation. Plant Biology 15(3): 483–495. DOI: 10.1111/j.1438-8677.2012.00670.x
  • Pretzsch H., Uhl E., Biber P., Schutze G. & Coates D. 2012b: Change of allometry between coarse root and shoot of Lodgepole pine (Pinus contorta Dougl. ex. Loud.) along a stress gradient in the sub-boreal forest zone of British Columbia. Scandinavian Journal of Forest Research 27(6): 532–544. DOI: 10.1080/02827581.2012.672583
  • Rasztovits E., Berk, I., Mátyás Cs., Czimber K., Pötzelsberger E. & Móricz N. 2014: The incorporation of extreme drought events improves models for beech persistence at its distribution limit. Annals of Forest Science 71: 201–210. DOI: 10.1007/s13595-013-0346-0
  • Regent Instruments 2014: WinDENDRO for Tree-ring Analysis. Québec, Canada Inc.
  • Rybníček M., Čermák P., Prokop O., Žid T., Trnka M. & Kolář T. 2016: Oak (Quercus spp.) response to climate differs more among sites than among species in central Czech Republic. Dendrobiology 75: 55–65. DOI: 10.12657/denbio.075.006
  • Scharnweber T., Manthey M., Criegee C., Bauwe A., Schröder C. & Wilmking M. 2011: Drought matters – Declining precipitation influences growth of Fagus sylvatica L. and Quercus robur L. in north-eastern Germany. Forest Ecology and Management 262(6): 947–961. DOI: 10.1016/j.foreco.2011.05.026
  • Schuldt B., Buras A., Arend M., Vitasse Y., Beierkuhnlein C., Damm A., Gharun M., Grams T.E.E., Hauck M., Hajek P., Hartmann H., Hiltbrunner E., Hoch G., Holloway-Phillips M., Körner C., Larysch E., Lübbe T., Nelson D.B., Rammig A., Rigling A., Rose L., Ruehr N.K., Schumann K., Weiser F., Werner C., Wohlgemuth T., Zang C.S. & Kahmen A. 2020: A first assessment of the impact of the extreme 2018 summer drought on Central European forests. Basic and Applied Ecology 45: 86–103. DOI: 10.1016/j.baae.2020.04.003
  • Schwarz J., Skiadaresis G., Kohler M., Kunz J., Schnabel F., Vitali V. & Bauhus J. 2020: Quantifying growth responses of trees to drought – a critique of commonly used resilience indices and recommendations for future studies. Current Forestry Reports 6(3): 185–200. DOI: 10.1007/s40725-020-00119-2
  • Somogyi Z., Koltay A., Molnár T. & Móricz N. 2018: Forest health monitoring system in Hungary based on MODIS products. In Molnár V.É. (ed): IX. Theory meets practice in GIS, Debrecen 325–330. ISBN 978 963-318-723-4
  • Spinoni J., Naumann G., Vogt J. & Barbosa P. 2015: European drought climatologies and trends based on a multi-indicator approach. Global Planetary Change 127: 50–57. DOI: 10.1016/j.gloplacha.2015.01.012
  • Szalai S., Auer I., Hiebl J., Milkovich J., Radim T. Stepanek P., Zahradnicek P., Bihari Z., Lakatos M., Szentimrey T., Limanowka D., Kilar P., Cheval S., Deak Gy., Mihic D., Antolovic I., Mihajlovic V., Nejedlik P., Stastny P., Mikulova K., Nabyvanets I., Skyryk O., Krakovskaya S., Vogt J., Antofie T. & Spinoni J. 2013: Climate of the Greater Carpathian region. Final Technical Report. URL: www.carpatclim-eu.org. Egyéb URL
  • Thornthwaite C. 1948: An Approach toward a Rational Classification of Climate. Geographical Review 38(1): 55–94. DOI: 10.2307/210739
  • Thurm E.A., Uhl E. & Pretzsch H. 2016: Mixture reduces climate sensitivity of Douglas-fir stem growth. Forest Ecology and Management 376: 205–220. DOI: 10.1016/j.foreco.2016.06.020
  • Tognetti R., Raschi A., Béres C., Fenyvesi A. & Ridder H.W. 1996: Comparison of sap flow, cavitation and water status of Quercus petraea and Quercus cerris trees with special reference to computer tomography. Plant, Cell and Environment 19(8): 928–938. DOI: 10.1111/j.1365-3040.1996.tb00457.x
  • Tognetti R., Cherubini P., Marchi S. & Raschi A. 2007: Leaf traits and tree rings suggest different water-use and carbon assimilation strategies by two co-occurring Quercus species in a Mediterranean mixed-forest stand in Tuscany, Italy. Tree Physiology 27(12): 1741–1751. DOI: 10.1093/treephys/27.12.1741
  • Vanhellemont M., Sousa-Silva R., Maes S.L., van den Bulcke J., Hertzog L., De Groote S.R.E., Van Acker J., Bonte D., Martel A., Lens L. & Verheyen K. 2019: Distinct growth responses to drought for oak and beech in temperate mixed forests. Science of the Total Environment 650(2): 3017–3026. DOI: 10.1016/j.scitotenv.2018.10.054
  • Vicente-Serrano S. M., Beguería S. & López-Moreno J.I. 2010: A multiscalar drought index sensitive to global warming: The standardized precipitation evapotranspiration index. Journal of Climate 23(7): 1696–1718. DOI: 10.1175/2009JCLI2909.1
  • Weber, P., Bugmann, H., Pluess, A.R., Walthert, L. & Rigling A. 2013: Drought response and changing mean sensitivity of European beech close to the dry distribution limit. Trees: Structure and Function 27(1): 171–181. DOI: 10.1007/s00468-012-0786-4
  • Wigley T.M.L., Briffa K.R. & Jones P.D. 1984: On the average value of correlated time series, with applications in dendroclimatology and hydrometeorology. Journal of Climate and Applied Meteorology 23(2): 201–213. DOI: 10.1175/1520-0450(1984)023<0201:OTAVOC>2.0.CO;2
  • Zimmermann J., Hauck M., Dulamsuren C. & Leuschner C. 2015: Climate warming-related growth decline affects Fagus sylvatica, but not other broad-leaved tree species in Central European mixed forests. Ecosystems 18(4): 560–572. DOI: 10.1007/s10021-015-9849-x
  • Open Acces - Nyílt hozzáférés

    A cikk teljes terjedelmében szabadon letölthető, és megfelelő forrásmegjelöléssel szabadon felhasználható.

    Javasolt hivatkozás:

    Németh T. M., Szabó O. és Móricz N. (2021): Fiatal somogyi kocsánytalan tölgyek és csertölgyek szárazságérzékenységének összehasonlító vizsgálata. Erdészettudományi Közlemények, 11(1): 27-40. DOI: 10.17164/EK.2021.008

    11. évfolyam 1. szám,
    27-40. oldal

    DOI: 10.17164/EK.2021.008

    Közlésre elfogadva:
    2021. november 24.

    Kapcsolódó cikkek
    a folyóiratban

    5

    A szerzők további cikkei a folyóiratban

    6

    Témájukban kapcsolódó cikkek az Erdészettudományi Közleményekben*

    A szerzők további megjelent cikkei az Erdészettudományi Közleményekben

    * Automatikusan generált javaslatok a szerzők által megadott kulcsszavak más cikkek címében és kivonataiban való előfordulása alapján. Részletesebb kereséshez kérjük használja a manuális keresést.