Bulletin of Forestry Science / Volume 11 / Issue 2 / Pages 131-142
previous article | next article

The role of microorganisms in the ecology of bark beetles (Curculionidae, Scolytinae)

Gábor Balázs Balázs, Katalin Tuba & Ferenc Lakatos


Correspondence: Balázs Balázs Gábor

Postal address: H-9400 Sopron, Bajcsy-Zsilinszky út 4.

e-mail: balazsbalazsg[at]gmail.com


Some bark beetle species (Curculionidae, Scolytinae), especially in coniferous forests, are major factors for mass mortality of trees. Although bark beetle species usually do not attack healthy trees, they can colonize weakened or dying trees. Some species may have massive outbreaks, especially under defined abiotic conditions (like hot and dry weather or after wind and snow damage) and can have significant economic and ecological effect. Microorganisms associated with bark beetles such as fungi or bacteria play important roles in their colonization success, development, and gradation. This paper provides a review on the effects of microorganisms on the biology of bark beetles and interactions between bark beetles and their host plants. We present these interactions based on the holobiont theory, i.e., considering bark beetles and their associated microbiota as a whole.

Keywords: Scolytinae, microorganisms, symbioses, holobiont

  • Acuna R., Padilla B. E., Florez-Ramos C. P., Rubio J. D., Herrera J. C., Benavides P. et al. 2012: Adaptive horizontal transfer of a bacterial gene to an invasive insect pest of coffee. Proceedings of the National Academy of Sciences of the United States of America 109: 4197–4202. DOI: 10.1073/pnas.1121190109
  • Batra L. R. 1963: Ecology of ambrosia fungi and their dissemination by beetles. Transactions of the Kansas Academy of Science 66: 213–236. DOI: 10.2307/3626562
  • Boone C., Keefover-Ring K., Mapes A. C., Adams A. S., Bohlmann J. & Raffa K. F. 2013: Bacteria associated with a treekilling insect reduce concentrations of plant defense compounds. Journal of Chemical Ecology 39: 1003–1006. DOI: 10.1007/s10886-013-0313-0
  • Davis T. S. & Hofstetter R. W. 2011: Reciprocal interactions between the bark beetle-associated yeast Ogataea pini and host plant chemistry. Mycologia 103: 1201–1207. DOI: 10.3852/11-083
  • de Bary A. 1879: Die Erscheinung der Symbiose: Vortrag. Strassburg, Verlag von Karl J. Trübner.
  • de Beer Z. W., Duong T., Barnes I., Wingfield B. D. & Wingfield M. J. 2014: Redefining Ceratocystis and allied genera. Studies in Mycology 79: 187–219. DOI: 10.1016/j.simyco.2014.10.001
  • DiGuistini S., Wang Y., Liao N. Y., Taylor G., Tanguay P., Feau N. et al. 2011: Genome and transcriptome analyses of the mountain pine beetle-fungal symbiont Grosmannia clavigera, a lodgepole pine pathogen. Proceedings of the National Academy of Sciences of the United States of America 108: 2504–2509. DOI: 10.1073/pnas.1011289108
  • Douglas A. & Werren J. 2016: Holes in the Hologenome: Why host-microbe symbioses are not holobionts. mBio 7: e02099-15. DOI: 10.1128/mBio.02099-15
  • Feijen F. A. A., Vos R. A., Nuytinck J. & Merckx V. S. F. T. 2018: Evolutionary dynamics of mycorrhizal symbiosis in land plant diversification. Scientific Reports 8: 10698. DOI: 10.1038/s41598-018-28920-x
  • Frank A. B. 1877: Über die biologischen Verhältnisse des Thallus einiger Krustenflechten. Beiträge zur Biologie der Pflanzen 2: 123–200.
  • García-Fraile P. 2018: Roles of bacteria in the bark beetle holobiont – how do they shape this forest pest? Annals of Applied Biology 172: 111–125. DOI: 10.1111/aab.12406
  • Gilbert S. F., Sapp J. & Tauber A. I. 2012: A symbiotic view of life: We have never been individuals. The Quarterly Review of Biology 87: 325–341. DOI: 10.1086/668166
  • Guerrero R., Margulis L. & Berlanga M. 2013: Symbiogenesis: the holobiont as a unit of evolution. International Microbiology 16: 133–143. DOI: 10.2436/20.1501.01.188
  • Harrington T. C. 2005: Ecology and evolution of mycophagous bark beetles and their fungal partners. In: Vega F. E. & Blackwell M. (eds.): Ecological and evolutionary advances in insect-fungal associations. Oxford University Press, Oxford, 257–291.
  • Hofstetter R. W., Dinkins-Bookwalter J., Davis T. S. & Klepzig K. D. 2015: Symbiotic associations of bark beetles. In: Vega F. E. & Hofstetter R. W. (eds.): Bark beetles: biology and ecology of native and invasive species. Academic Press, London, 209–245. DOI: 10.1016/b978-0-12-417156-5.00006-x
  • Hulcr J., Adams A. S., Raffa K. F., Hofstetter R. W., Klepzig K. D. & Currie C. R. 2011: Presence and diversity of Streptomyces in Dendroctonus and sympatric beetle galleries across North America. Molecular Ecology 61: 759–768. DOI: 10.1007/s00248-010-9797-0
  • Hunt D . W. A. & Borden J. H. 1990: Conversion of verbenols to verbenone by yeasts isolated from Dendroctonus ponderosae (Coleoptera: Scolytidae). Journal of Chemical Ecology 16: 1385–1397. DOI: 10.1007/BF01021034
  • Janson, E. M., Stireman J. O., Singer M. S. & Abbot P. 2008: Phytophagous insect-microbe mutualisms and adaptive evolutionary diversification. Evolution 62: 997–1012. DOI: 10.1111/j.1558-5646.2008.00348.x
  • Joy J. B. 2012: Symbiosis catalyses niche expansion and diversification. Proceedings of the Royal Society B: Biological Sciences 280: 2820. DOI: 10.1098/rspb.2012.2820
  • Kirisits T. 2004: Fungal associates of European bark beetles with special emphasis on the ophiostomatoid fungi. In: Lieutier F., Day K. R., Battisti A., Grégoire J. C. & Evans H. F. (eds.): Bark and wood boring insects in living trees in Europe, a synthesis. Springer, Dordrecht, 181–236. DOI: 10.1007/1-4020-2241-7_10
  • Kirisits T. 2010: Fungi isolated from Picea abies infested by the bark beetle Ips typographus in the Białowieza forest in north-eastern Poland. Forest Pathology 40: 100–110. DOI: 10.1111/j.1439-0329.2009.00613.x
  • Kirkendall L. R., Biedermann P. H. W. & Jordal B. H. 2015: Evolution and diversity of bark and ambrosia beetles. In: Vega F. E. & Hofstetter R. W. (eds.): Bark beetles: biology and ecology of native and invasive species. Academic Press, London, 85–156. DOI: 10.1016/B978-0-12-417156-5.00003-4
  • Krokene P. 2015: Conifer defense and resistance to bark beetles. In: Vega F. E. & Hofstetter R. W. (eds.): Bark beetles: biology and ecology of native and invasive species. Academic Press, London, 177–207. DOI: 10.1016/B978-0-12-417156-5.00005-8
  • Lah L., Haridas S., Bohlmann J. & Breuil C. 2013: The cytochromes P450 of Grosmannia clavigera: Genome organization, phylogeny, and expression in response to pine host chemicals. Fungal Genetics and Biology 50: 72–81. DOI: 10.1016/j.fgb.2012.10.002
  • Leufven A., Bergstrom G. & Falsen E. 1984: Interconversion of verbenols and verbenone by identified yeasts associated from the spruce bark beetle Ips typographus. Journal of Chemical Ecology 10: 1349–1361. DOI: 10.1007/BF00988116
  • Lévieux J., Cassier P., Guillaumin D. & Roques A. 1991: Structures implicated in the transportation of pathogenic fungi by the European bark beetle, Ips sexdentatus Boerner: ultrastructure of a mycangium. The Canadian Entomologist 123: 245–254. DOI: 10.4039/Ent123245-2
  • Margulis L. 1970: Origin of eukaryotic cells: Evidence and research implications for a theory of the origin and evolution of microbial, plant and animal cells on the precambrian Earth. Yale University Press, New Heaven.
  • Margulis L, & Fester R 1991: Symbiosis as a source of evolutionary innovation: speciation and morphogenesis. MIT Press, Boston.
  • Morales-Jimenez J., de Leon A.V.P., García-Domínguez A., Martínez-Romero E., Zuniga G. & Hernandez-Rodríguez C. 2013: Nitrogenfixing and uricolytic bacteria associated with the gut of Dendroctonus rhizophagus and Dendroctonus valens (Curculionidae: Scolytinae). Microbial Ecology 66: 200–210. DOI: 10.1007/s00248-013-0206-3
  • Mushegian A. A.; Ebert D. 2016: Rethinking „mutualism” in diverse host‐symbiont communities. BioEssays 38: 100–108. DOI: 10.1002/bies.201500074
  • Raffa K. F., Grégoire J. C. & Lindgren B. S. 2015: Natural history and ecology of bark beetles. In: Vega F. E. & Hofstetter R. W. (eds.): Bark beetles: biology and ecology of native and invasive species. Academic Press, London, 1–40. DOI: 10.1016/B978-0-12-417156-5.00001-0
  • Scott J. J., Dong-Chan O., Yuceer M. C., Klepzig K. D., Clardy J. & Currie C. R. 2008: Bacterial protection of beetle-fungus mutualism. Science 322: 63. DOI: 10.1126/science.1160423
  • Six D. L. 2003: Bark beetle-fungus symbioses. In: Bourtzis K. & Miller T. A. (eds.): Insect symbiosis. contemporary topics in entomology series. CRC Press, Boca Raton, London, New York, Washington D.C., 97–114. DOI: 10.1201/9780203009918-12
  • Six D. L. 2012: Ecological and evolutionary determinants of bark beetle-fungus symbioses. Insects 3: 339–366. DOI: 10.3390/insects3010339
  • Six D. L. 2013: The bark beetle holobiont: why microbes matter. Journal of Chemical Ecology 39: 989–1002. DOI: 10.1007/s10886-013-0318-8
  • Six D. L. 2019: A major symbiont shift supports a major niche shift in a clade of tree‐killing bark beetles. Ecological Entomology 45: 190–201. DOI: 10.1111/een.12786
  • Six D. L., James J. & Elser J. J. 2020: Mutualism is not restricted to tree‐killing bark beetles and fungi: the ecological stoichiometry of secondary bark beetles, fungi, and a scavenger. Ecological Entomology 45: 1134–1145. DOI: 10.1111/een.12897
  • Six D. L. & Wingfield M. J. 2011: The role of phytopathogenicity in bark beetle-fungus symbioses: a challenge to the classic paradigm. Annual Reviev of Entomology 56: 255–272. DOI: 10.1146/annurev-ento-120709-144839
  • Sprent J. I. 2005: Nitrogen in soils symbiotic fixation. In: Hillel D. (ed.): Encyclopedia of soils in the environment. Elsevier, Amsterdam, 46–56. DOI: 10.1016/B0-12-348530-4/00457-4
  • Strullu-Derrein C., Selosse M. A., Kenrick P. & Martin F. M. 2018: The origin and evolution of mycorrhizal symbioses: from paleomycology to phylogenomics. New Phytologist 220: 1012–1030. DOI: 10.1111/nph.15076
  • Vega F. E. & Biedermann P. H. W. 2020: On interactions, associations, mycetangia, mutualists and symbiotes in insect. fungus symbioses. Fungal Ecology 44: 100909. DOI: 10.1016/j.funeco.2019.100909
  • Wadke N., Kandasamy D., Vogel H., Lah L., Wingfield B. D., Paetz C. et al. 2016: The bark-beetle-associated fungus, Endoconidiophora polonica, utilizes the phenolic defense compounds of its host as a carbon source. Plant Physiology 171: 914–931. DOI: 10.1104/pp.15.01916
  • Yamaoka Y. 2017: Taxonomy and pathogenicity of ophiostomatoid fungi associated with bark beetle infesting conifers in Japan, with special reference to those related to subalpine conifers. Myoscience 58: 221–235. DOI: 10.1016/j.myc.2017.03.001
  • Zilber-Rosenberg I. & Rosenberg E. 2008: Role of microorganisms in the evolution of animals and plants. FEMS Microbiology Reviews 32: 723–735. DOI: 10.1111/j.1574-6976.2008.00123.x
  • Zipfel R. D., de Beer Z. W., Jacobs K., Wingfield B. D., Wingfield M. J. 2006: Multigene phylogenies define Ceratocystiopsis and Grosmannia distinct from Ophiostoma. Studies in Mycology 55: 75–97. DOI: 10.3114/sim.55.1.75
  • Zook D. 1998: A new symbiosis language. Symbiosis News 1: 1–3.
  • Zook D. 2015: Symbiosis-Evolution’s co-author. In: Gontier N. (ed.): Reticulate Evolution. Cham, Switzerland. Springer, 41–80. DOI: 10.1007/978-3-319-16345-1_2
  • Open Acces

    For non-commercial purposes, let others distribute and copy the article, and include in a collective work, as long as they cite the author(s) and the journal, and provided they do not alter or modify the article.

    Cite this article as:

    Balázs, B. G., Tuba, K. & Lakatos, F. (2021): The role of microorganisms in the ecology of bark beetles (Curculionidae, Scolytinae). Bulletin of Forestry Science, 11(2): 131-142. (in Hungarian) DOI: 10.17164/EK.2021.005

    Volume 11, Issue 2
    Pages: 131-142

    DOI: 10.17164/EK.2021.005

    First published:
    13 September 2021

    Related content


    More articles
    by this authors


    Related content in the Bulletin of Forestry Science*

    More articles by this authors in the Bulletin of Forestry Science

  • Bali, L., Szinetár, Cs., Andrési, D., Tuba, K. & Kálmán, K. (2017): Pitfall trapping arachnological survey in the Educational Forest of Ásotthalom. Bulletin of Forestry Science, 7(1): 69-84.
  • Csóka, Gy., Hirka, A., Csepelényi, M., Szőcs, L., Molnár, M., Tuba, K., Hillebrand, R. & Lakatos, F. (2018): Response of forest insects to the climate change (case studies). Bulletin of Forestry Science, 8(1): 149-162.
  • Andrési, R., Janik, G., Fürjes-Mikó, Á., Eötvös, Cs. B. & Tuba, K. (2018): Faunistical studies on coleoptera of tinder conk [Fomes fomentarius (L. ex. Fr.) Kickx.] in Hungary. Bulletin of Forestry Science, 8(2): 71-82.
  • Bali, L., Andrési, D., Ferka, R., Tuba, K. & Szinetár, Cs. (2019): Pitfall trapping arachnological survey in the Szalafő Forest Reserve. Bulletin of Forestry Science, 9(2): 99-112.
  • Bali, L., Tuba, K. & Szinetár, Cs. (2020): Arachnological survey of the Roth selection forest. Bulletin of Forestry Science, 10(2): 109-124.
  • Bali, L., Andrési, D., Tuba, K. & Szinetár, Cs. (2021): Ground-dwelling spider fauna of the Nyíri-forest near Kecskemét, Hungary. Bulletin of Forestry Science, 11(2): 115-129.
  • Andrési, D. & Lakatos, F. (2014): Investigations of ground beetle assemblages in an artifical gap of Balaton Uplands (Hungary). Bulletin of Forestry Science, 4(1): 171-183.
  • Horváth, B. & Lakatos, F. (2014): Study on the diversity of nocturnal Macrolepidoptera communities in different age sessile oak – hornbeam forests. Bulletin of Forestry Science, 4(1): 185-196.
  • Eötvös, Cs. B., Tóth, M., Hirka, A., Fürjes-Mikó, Á., Gáspár, Cs., Paulin, M., Lakatos, F. & Csóka, Gy. (2023): Factors influencing the short-distance spread of oak lace bug [Corythucha arcuata Say, 1832)] in hungarian oak forests. Bulletin of Forestry Science, 13(2): 131-144.
  • * Automatically generated recommendations based on the occurrence of keywords given by authors in the titles and abstracts of other articles. For more detailed search please use the manual search.