Erdészettudományi Közlemények / 11. évfolyam / 1. szám / 0-0. oldal
előző | következő

Mikroorganizmusok szerepe a szúbogarak (Curculionidae, Scolytinae) ökológiájában

Balázs Balázs Gábor, Tuba Katalin és Lakatos Ferenc

Kapcsolat a szerzőkkel

Levelező szerző: Balázs Balázs Gábor

Cím: H-9400 Sopron, Bajcsy-Zsilinszky út 4.

e-mail cím: balazsbalazsg[at]gmail.com

Kivonat

A szúbogarak (Curculionidae, Scolytinae) egyes fajai, különösen fenyőerdőkben, a legveszélyesebb erdei károsítók közé tartoznak. A legtöbb szúfaj általában nem támad meg, nem pusztít el egészséges fákat, hanem a legyengült egyedeket, valamint az elpusztult fákat kolonizálja sikeresen. Egyes fajok azonban bizonyos abiotikus tényezők hatására (tartósan meleg és száraz időjárás, széltörés, hótörés) tömegesen elszaporodhatnak, így gazdasági és ökológiai hatásuk jelentős. A bogarak táplálkozásában, a gazdanövény sikeres kolonizálásában, a gradációjukban fontos szerepet játszanak a szúkkal társult mikroorganizmusok, mint például gombák és baktériumok. Jelen írás célja ezen mikroorganizmusok a szúbogarak életmódjára, valamint a szúk és tápnövényeik közötti interakcióra gyakorolt hatásának bemutatása. Tesszük ezt egy, a ma reneszánszát élő koncepció, a holobiont elmélet szerinti megközelítéssel, vagyis a szúbogarakat és a velük társult mikrobiótát egységes egészként értelmezve.

Kulcsszavak: Scolytinae, mikroorganizmusok, szimbiózis, holobiont

  • Acuna R., Padilla B. E., Florez-Ramos C. P., Rubio J. D., Herrera J. C., Benavides P. et al. 2012: Adaptive horizontal transfer of a bacterial gene to an invasive insect pest of coffee. Proceedings of the National Academy of Sciences of the United States of America 109: 4197–4202. DOI: 10.1073/pnas.1121190109
  • Batra L. R. 1963: Ecology of ambrosia fungi and their dissemination by beetles. Transactions of the Kansas Academy of Science 66: 213–236. DOI: 10.2307/3626562
  • Boone C., Keefover-Ring K., Mapes A. C., Adams A. S., Bohlmann J. & Raffa K. F. 2013: Bacteria associated with a treekilling insect reduce concentrations of plant defense compounds. Journal of Chemical Ecology 39: 1003–1006. DOI: 10.1007/s10886-013-0313-0
  • Davis T. S. & Hofstetter R. W. 2011: Reciprocal interactions between the bark beetle-associated yeast Ogataea pini and host plant chemistry. Mycologia 103: 1201–1207. DOI: 10.3852/11-083
  • de Bary A. 1879: Die Erscheinung der Symbiose: Vortrag. Strassburg, Verlag von Karl J. Trübner.
  • de Beer Z. W., Duong T., Barnes I., Wingfield B. D. & Wingfield M. J. 2014: Redefining Ceratocystis and allied genera. Studies in Mycology 79: 187–219. DOI: 10.1016/j.simyco.2014.10.001
  • DiGuistini S., Wang Y., Liao N. Y., Taylor G., Tanguay P., Feau N. et al. 2011: Genome and transcriptome analyses of the mountain pine beetle-fungal symbiont Grosmannia clavigera, a lodgepole pine pathogen. Proceedings of the National Academy of Sciences of the United States of America 108: 2504–2509. DOI: 10.1073/pnas.1011289108
  • Douglas A. & Werren J. 2016: Holes in the Hologenome: Why host-microbe symbioses are not holobionts. mBio 7: e02099-15. DOI: 10.1128/mBio.02099-15
  • Feijen F. A. A., Vos R. A., Nuytinck J. & Merckx V. S. F. T. 2018: Evolutionary dynamics of mycorrhizal symbiosis in land plant diversification. Scientific Reports 8: 10698. DOI: 10.1038/s41598-018-28920-x
  • Frank A. B. 1877: Über die biologischen Verhältnisse des Thallus einiger Krustenflechten. Beiträge zur Biologie der Pflanzen 2: 123–200.
  • García-Fraile P. 2018: Roles of bacteria in the bark beetle holobiont – how do they shape this forest pest? Annals of Applied Biology 172: 111–125. DOI: 10.1111/aab.12406
  • Gilbert S. F., Sapp J. & Tauber A. I. 2012: A symbiotic view of life: We have never been individuals. The Quarterly Review of Biology 87: 325–341. DOI: 10.1086/668166
  • Guerrero R., Margulis L. & Berlanga M. 2013: Symbiogenesis: the holobiont as a unit of evolution. International Microbiology 16: 133–143. DOI: 10.2436/20.1501.01.188
  • Harrington T. C. 2005: Ecology and evolution of mycophagous bark beetles and their fungal partners. In: Vega F. E. & Blackwell M. (eds.): Ecological and evolutionary advances in insect-fungal associations. Oxford University Press, Oxford, 257–291.
  • Hofstetter R. W., Dinkins-Bookwalter J., Davis T. S. & Klepzig K. D. 2015: Symbiotic associations of bark beetles. In: Vega F. E. & Hofstetter R. W. (eds.): Bark beetles: biology and ecology of native and invasive species. Academic Press, London, 209–245. DOI: 10.1016/b978-0-12-417156-5.00006-x
  • Hulcr J., Adams A. S., Raffa K. F., Hofstetter R. W., Klepzig K. D. & Currie C. R. 2011: Presence and diversity of Streptomyces in Dendroctonus and sympatric beetle galleries across North America. Molecular Ecology 61: 759–768. DOI: 10.1007/s00248-010-9797-0
  • Hunt D . W. A. & Borden J. H. 1990: Conversion of verbenols to verbenone by yeasts isolated from Dendroctonus ponderosae (Coleoptera: Scolytidae). Journal of Chemical Ecology 16: 1385–1397. DOI: 10.1007/BF01021034
  • Janson, E. M., Stireman J. O., Singer M. S. & Abbot P. 2008: Phytophagous insect-microbe mutualisms and adaptive evolutionary diversification. Evolution 62: 997–1012. DOI: 10.1111/j.1558-5646.2008.00348.x
  • Joy J. B. 2012: Symbiosis catalyses niche expansion and diversification. Proceedings of the Royal Society B: Biological Sciences 280: 2820. DOI: 10.1098/rspb.2012.2820
  • Kirisits T. 2004: Fungal associates of European bark beetles with special emphasis on the ophiostomatoid fungi. In: Lieutier F., Day K. R., Battisti A., Grégoire J. C. & Evans H. F. (eds.): Bark and wood boring insects in living trees in Europe, a synthesis. Springer, Dordrecht, 181–236. DOI: 10.1007/1-4020-2241-7_10
  • Kirisits T. 2010: Fungi isolated from Picea abies infested by the bark beetle Ips typographus in the Białowieza forest in north-eastern Poland. Forest Pathology 40: 100–110. DOI: 10.1111/j.1439-0329.2009.00613.x
  • Kirkendall L. R., Biedermann P. H. W. & Jordal B. H. 2015: Evolution and diversity of bark and ambrosia beetles. In: Vega F. E. & Hofstetter R. W. (eds.): Bark beetles: biology and ecology of native and invasive species. Academic Press, London, 85–156. DOI: 10.1016/B978-0-12-417156-5.00003-4
  • Krokene P. 2015: Conifer defense and resistance to bark beetles. In: Vega F. E. & Hofstetter R. W. (eds.): Bark beetles: biology and ecology of native and invasive species. Academic Press, London, 177–207. DOI: 10.1016/B978-0-12-417156-5.00005-8
  • Lah L., Haridas S., Bohlmann J. & Breuil C. 2013: The cytochromes P450 of Grosmannia clavigera: Genome organization, phylogeny, and expression in response to pine host chemicals. Fungal Genetics and Biology 50: 72–81. DOI: 10.1016/j.fgb.2012.10.002
  • Leufven A., Bergstrom G. & Falsen E. 1984: Interconversion of verbenols and verbenone by identified yeasts associated from the spruce bark beetle Ips typographus. Journal of Chemical Ecology 10: 1349–1361. DOI: 10.1007/BF00988116
  • Lévieux J., Cassier P., Guillaumin D. & Roques A. 1991: Structures implicated in the transportation of pathogenic fungi by the European bark beetle, Ips sexdentatus Boerner: ultrastructure of a mycangium. The Canadian Entomologist 123: 245–254. DOI: 10.4039/Ent123245-2
  • Margulis L. 1970: Origin of eukaryotic cells: Evidence and research implications for a theory of the origin and evolution of microbial, plant and animal cells on the precambrian Earth. Yale University Press, New Heaven.
  • Margulis L, & Fester R 1991: Symbiosis as a source of evolutionary innovation: speciation and morphogenesis. MIT Press, Boston.
  • Morales-Jimenez J., de Leon A.V.P., García-Domínguez A., Martínez-Romero E., Zuniga G. & Hernandez-Rodríguez C. 2013: Nitrogenfixing and uricolytic bacteria associated with the gut of Dendroctonus rhizophagus and Dendroctonus valens (Curculionidae: Scolytinae). Microbial Ecology 66: 200–210. DOI: 10.1007/s00248-013-0206-3
  • Mushegian A. A.; Ebert D. 2016: Rethinking „mutualism” in diverse host‐symbiont communities. BioEssays 38: 100–108. DOI: 10.1002/bies.201500074
  • Raffa K. F., Grégoire J. C. & Lindgren B. S. 2015: Natural history and ecology of bark beetles. In: Vega F. E. & Hofstetter R. W. (eds.): Bark beetles: biology and ecology of native and invasive species. Academic Press, London, 1–40. DOI: 10.1016/B978-0-12-417156-5.00001-0
  • Scott J. J., Dong-Chan O., Yuceer M. C., Klepzig K. D., Clardy J. & Currie C. R. 2008: Bacterial protection of beetle-fungus mutualism. Science 322: 63. DOI: 10.1126/science.1160423
  • Six D. L. 2003: Bark beetle-fungus symbioses. In: Bourtzis K. & Miller T. A. (eds.): Insect symbiosis. contemporary topics in entomology series. CRC Press, Boca Raton, London, New York, Washington D.C., 97–114. DOI: 10.1201/9780203009918-12
  • Six D. L. 2012: Ecological and evolutionary determinants of bark beetle-fungus symbioses. Insects 3: 339–366. DOI: 10.3390/insects3010339
  • Six D. L. 2013: The bark beetle holobiont: why microbes matter. Journal of Chemical Ecology 39: 989–1002. DOI: 10.1007/s10886-013-0318-8
  • Six D. L. 2019: A major symbiont shift supports a major niche shift in a clade of tree‐killing bark beetles. Ecological Entomology 45: 190–201. DOI: 10.1111/een.12786
  • Six D. L., James J. & Elser J. J. 2020: Mutualism is not restricted to tree‐killing bark beetles and fungi: the ecological stoichiometry of secondary bark beetles, fungi, and a scavenger. Ecological Entomology 45: 1134–1145. DOI: 10.1111/een.12897
  • Six D. L. & Wingfield M. J. 2011: The role of phytopathogenicity in bark beetle-fungus symbioses: a challenge to the classic paradigm. Annual Reviev of Entomology 56: 255–272. DOI: 10.1146/annurev-ento-120709-144839
  • Sprent J. I. 2005: Nitrogen in soils symbiotic fixation. In: Hillel D. (ed.): Encyclopedia of soils in the environment. Elsevier, Amsterdam, 46–56. DOI: 10.1016/B0-12-348530-4/00457-4
  • Strullu-Derrein C., Selosse M. A., Kenrick P. & Martin F. M. 2018: The origin and evolution of mycorrhizal symbioses: from paleomycology to phylogenomics. New Phytologist 220: 1012–1030. DOI: 10.1111/nph.15076
  • Vega F. E. & Biedermann P. H. W. 2020: On interactions, associations, mycetangia, mutualists and symbiotes in insect. fungus symbioses. Fungal Ecology 44: 100909. DOI: 10.1016/j.funeco.2019.100909
  • Wadke N., Kandasamy D., Vogel H., Lah L., Wingfield B. D., Paetz C. et al. 2016: The bark-beetle-associated fungus, Endoconidiophora polonica, utilizes the phenolic defense compounds of its host as a carbon source. Plant Physiology 171: 914–931. DOI: 10.1104/pp.15.01916
  • Yamaoka Y. 2017: Taxonomy and pathogenicity of ophiostomatoid fungi associated with bark beetle infesting conifers in Japan, with special reference to those related to subalpine conifers. Myoscience 58: 221–235. DOI: 10.1016/j.myc.2017.03.001
  • Zilber-Rosenberg I. & Rosenberg E. 2008: Role of microorganisms in the evolution of animals and plants. FEMS Microbiology Reviews 32: 723–735. DOI: 10.1111/j.1574-6976.2008.00123.x
  • Zipfel R. D., de Beer Z. W., Jacobs K., Wingfield B. D., Wingfield M. J. 2006: Multigene phylogenies define Ceratocystiopsis and Grosmannia distinct from Ophiostoma. Studies in Mycology 55: 75–97. DOI: 10.3114/sim.55.1.75
  • Zook D. 1998: A new symbiosis language. Symbiosis News 1: 1–3.
  • Zook D. 2015: Symbiosis-Evolution’s co-author. In: Gontier N. (ed.): Reticulate Evolution. Cham, Switzerland. Springer, 41–80. DOI: 10.1007/978-3-319-16345-1_2
  • Open Acces - Nyílt hozzáférés

    A cikk teljes terjedelmében szabadon letölthető, és megfelelő forrásmegjelöléssel szabadon felhasználható.

    Javasolt hivatkozás:

    Balázs B. G., Tuba K. és Lakatos F. (2021): Mikroorganizmusok szerepe a szúbogarak (Curculionidae, Scolytinae) ökológiájában. Erdészettudományi Közlemények, 11(1): 0-0. DOI: 10.17164/EK.2021.005

    11. évfolyam 1. szám,
    0-0. oldal

    DOI: 10.17164/EK.2021.005

    Közlésre elfogadva:
    2021. szeptember 13.

    A szerzők további cikkei a folyóiratban

    8

    A szerzők további megjelent cikkei az Erdészettudományi Közleményekben

  • Bali L., Szinetár Cs., Andrési D., Tuba K. és Kálmán K. (2017): Talajcsapdás arachnológiai vizsgálat az ásotthalmi Tanulmányi-erdőben. Erdészettudományi Közlemények, 7(1): 69-84.
  • Csóka Gy., Hirka A., Csepelényi M., Szőcs L., Molnár M., Tuba K., Hillebrand R. és Lakatos F. (2018): Erdei rovarok reakciói a klímaváltozásra (esettanulmányok). Erdészettudományi Közlemények, 8(1): 149-162.
  • Andrési R., Janik G., Fürjes-Mikó Á., Eötvös Cs. B. és Tuba K. (2018): A bükkfatapló [Fomes fomentarius (L. ex. Fr.) Kickx.] bogárfaunisztikai vizsgálata Magyarországon. Erdészettudományi Közlemények, 8(2): 71-82.
  • Bali L., Andrési D., Ferka R., Tuba K. és Szinetár Cs. (2019): Talajcsapdás arachnológiai vizsgálat a Szalafő Erdőrezervátum területén. Erdészettudományi Közlemények, 9(2): 99-112.
  • Bali L., Tuba K. és Szinetár Cs. (2020): A Roth-féle szálaló erdő arachnológiai vizsgálata. Erdészettudományi Közlemények, 10(2): 109-124.
  • Bali L., Andrési D., Tuba K. és Szinetár Cs. (2021): Betekintés a Kecskemét közeli Nyíri-erdő talajfelszín közeli pókfaunájába. Erdészettudományi Közlemények, 11(1): 0-0.
  • Andrési D. és Lakatos F. (2014): Futóbogár-együttesek vizsgálata egy balatonfelvidéki mesterségesen kialakított lékben. Erdészettudományi Közlemények, 4(1): 171-183.
  • Horváth B. és Lakatos F. (2014): Éjszakai nagylepkék diverzitásának vizsgálata különböző korú gyertyános-kocsánytalan tölgyes erdőállományokban. Erdészettudományi Közlemények, 4(1): 185-196.