Erdészettudományi Közlemények / 3. évfolyam / 1. szám / 39-53. oldal
előző | következő

A bükk és a kocsánytalan tölgy elterjedésének szárazsági határa

Czúcz Bálint, Gálhidy László és Mátyás Csaba

Kapcsolat a szerzőkkel

Levelező szerző: Mátyás Csaba

Cím: H-9400 Sopron, Bajcsy-Zsilinszky u. 4.

e-mail cím: cm[at]emk.nyme.hu

Kivonat

A klímaváltozás feltételezett hatásának előrevetítése céljából finom léptékű elemzésnek vetettük alá a bükk és a kocsánytalan tölgy jelenlegi zonális elterjedését, illetve alsó/szárazsági elterjedési határát. Az előfordulások modellezésénél mindkét fafaj esetében a késő tavaszi és a nyári hőmérséklet-, illetve csapadékadatok bizonyultak a legfontosabb magyarázó változónak. A bükk érzékenységét a szárazságra jól mutatja az Ellenberg-index kiemelt jelentősége a vizsgált változók között. Más modellezések eredményével összhangban a különböző klímaszcenáriókra számított elterjedésbeli változások igen drasztikusak. Mivel már viszonylag csekély klimatikus változás is drámai mértékben csökkentheti mindkét faj elterjedését, a felkészülés és a megfelelő erdőgazdálkodási módszerek alkalmazása sürgető feladat, különösen a száraz határtermőhelyeken.

Kulcsszavak: szárazsági határ, alsó erdőhatár, aszálytolerancia, klímaváltozás, klímaniche-modellezés?

  • Allen, C.D.; Macalady, A.K.; Chenchouni, H.; Bachelet, D.; McDowell, N.; Vennetier, M.; Kitzberger, T.; Rigling, A.; Breshears, D.D.; Hogg, E.H.; Gonzales, P.; Fensham, R.; Zhang, Z.; Castro, J.; Demidova, N.; Lim, J.H.; Allard, G.; Running, S.W.; Semerci, A. and Cobb, N. 2010: A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests. Forest Ecology and Management, 259: 660–684. DOI: 10.1016/j.foreco.2009.09.001
  • Araújo, M.B.; Whittaker, R.J.; Ladle, R.J. and Erhard, M. 2005: Reducing uncertainty in projections of extinction risk from climate change. Global Ecology and Biogeography, 14: 529–538. DOI: 10.1111/j.1466-822x.2005.00182.x
  • Araújo, M.B. and New, M. 2007: Ensemble forecasting of species distributions. Trends in Ecology and Evolution, 22: 42–47. DOI: 10.1016/j.tree.2006.09.010
  • Beaumont, L.J.; Pitman, A.J.; Poulsen M. and Hughes, L. 2007: Where will species go? Incorporating new advances in climate modelling into projections of species distributions. Global Change Biology, 13: 1368–1385. DOI: 10.1111/j.1365-2486.2007.01357.x
  • Benito Garzón, M.; Alía R.; Robson T. M.; and Zavala, M. A. 2011: Intra-specific variability and plasticity influence potential tree species distributions under climate change. Global Ecology and Biogeography, 20: 766–778. DOI: 10.1111/j.1466-8238.2010.00646.x
  • Berki, I.; Rasztovits, E.; Móricz, N. and Mátyás, Cs. 2009: Determination of the drought tolerance limit of beech forests and forecasting their future distribution in Hungary. Cereal Research Communications, 37: 613–616.
  • Berry, P. M.; Dawson, T. P.; Harrison, P. A. and Pearson, R. G. 2002: Modelling potential impacts of climate change on the bioclimatic envelope of species in Britain and Ireland. Global Ecology and Biogeography, 11: 453–462. DOI: 10.1046/j.1466-822x.2002.00304.x
  • Benito Garzón, M.; Sánchez de Dios, R. and Sainz Ollero, H. 2008: Effects of climate change on the distribution of Iberian tree species. Applied Vegetation Science, 11: 169–178. DOI: 10.3170/2008-7-18348
  • Bolliger, J.; Kienast, F. and Zimmermann, N. E. 2000: Risks of global warming on montane and subalpine forests in Switzerland – a modeling study. Regional Environmental Change, 1: 99–111. DOI: 10.1007/s101130000018
  • Bolte, A.; Czajkowski, T. and Kompa, T. 2007: The north-eastern distribution range of European beech – a review. Forestry, 80(4): 413–429. DOI: 10.1093/forestry/cpm028
  • Breiman, L.; Friedman, J.; Ohlsen, R. and Stone C. 1984: Classification and regression trees, Chapman Hall/CRC Press, New York.
  • Christensen, J.H.; Hewitson, B.; Busuioc, A.; Chen, A.; Gao, X.; Held, I.; Jones, R.; Kolli, R.K.; Kwon, W–T.; Laprise, R.; Magaña Rueda, V.; Mearns, L.; Menéndez, C.G.; Räisänen, J.; Rinke, A.; Sarr, A. and Whetton, P. 2007: Regional Climate Projections. In: Solomon, S.; Qin, D.; Manning, M., et al. (Eds.) Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, UK. 747–845.
  • Czajkowski, T.; Kuhling, M. and Bolte, A. 2005: Einfluss der Sommertrockenheit im Jahre 2003 auf das Wachstum von Naturverjüngungen der Buche (Fagus sylvatica L.) im nordöstlichen Mitteleuropa. Allgemeine Forst- und Jagdzeitung, 176: 133–143.
  • Czúcz, B.; Gálhidy, L. and Mátyás, Cs. 2011: Present and forecasted xeric climatic limits of beech and sessile oak distribution at low altitudes in Central Europe. Annals of Forest Science, 68(1): 99–108. DOI: 10.1007/s13595-011-0011-4
  • Csóka Gy.; Koltay A.; Hirka A. és Janik G. 2007: Az aszályosság hatása kocsánytalan tölgyeseink és bükköseink egészségi állapotára. In: Mátyás Cs. és Vig P. (szerk.): Erdő és klíma V. kötet, Sopron, 229–239.
  • Csóka Gy.; Koltay A.; Hirka A. és Janik G. 2009: Az aszályosság hatása kocsánytalan tölgyeseink és bükköseink egészségi állapotára. KlÍMA-21 füzetek, 57: 64–73.
  • Di Filippo, A.; Biondi, F.; Cufar, K. et al. 2007: Bioclimatology of beech (Fagus sylvatica L.) in the Eastern Alps: spatial and altitudinal climatic signals identified through a tree-ring network. Journal of Biogeography, 34: 1873–1892. DOI: 10.1111/j.1365-2699.2007.01747.x
  • Dittmar, C.; Zech, W. and Elling, W. 2003: Growth variations of common beech (Fagus sylvatica L.) under different climatic and environmental conditions in Europe – a dendroecological study. Forest Ecology and Management, 173: 63–78. DOI: 10.1016/s0378-1127(01)00816-7
  • Dormann, C. F. 2007: Promising the future? Global change projections of species distributions. Basic and Applied Ecology, 8: 387–397. DOI: 10.1016/j.baae.2006.11.001
  • Ellenberg, H. 1988: Vegetation ecology of Central Europe, 4th ed. Cambridge University Press.
  • Fang, J. and Lechovicz, M.J. 2006: Climatic limits for the present distribution of beech (Fagus L.) species in the world. Journal of Biogeography, 33: 1804–1819. DOI: 10.1111/j.1365-2699.2006.01533.x
  • Fielding, A.H. and Bell, J.F. 1997: A review of methods for the assessment of prediction errors in conservation presence/absence models. Environmental Conservation, 24: 38–49. DOI: 10.1017/s0376892997000088
  • Fischlin, A.; Midgley, G.F.; Price, J.T.; Leemans, R.; Gopal, B.; Turley, C.; Rounsevell, M.D.A.; Dube, O.P.; Tarazona, J. and Velichko, A.A. 2007: Ecosystems, their properties, goods, and services. In: Parry, M.L.; Canziani, O.F.; Palutikof, J.P. et al. (Eds.): Climate Change 2007: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, UK. 211–272.
  • Führer, E. und Járó, Z. 1992: Auswirkungen der Klimaänderung auf die Waldbestände Ungarns, Allgemeine Forstzeitung, 9: 25–27.
  • Führer E. 2010: A fák növekedése és a klíma. „Klíma-21” füzetek, 61:98–107.
  • Führer, E.; Horváth, L.; Jagodics, A.; Machon, A. and Szabados, I. 2011: Application of a new aridity index in Hungarian forestry practice. Időjárás, 115 (3): 205–216.
  • Gea-Izquierdo, G.; Martín-Benito, D.; Cherubini, P. and Canellas, I. 2009: Climate – growth variability in Quercus ilex L west Iberian open woodlands of different stand density. Annales of Forest Science, 66: 802. DOI: 10.1051/forest/2009080
  • Goslee S.C., Dean L., The ecodist package for dissimilarity-based analysis of ecological data, J. Stat. Software 22: (2007) Nr. 7.
  • Hampe, A. and Petit, R.J. 2005: Conserving biodiversity under climate change: the rear edge matters. Ecology Letters, 8: 461–467. DOI: 10.1111/j.1461-0248.2005.00739.x
  • Hothorn, T.; Hornik, K. and Zeileis, A. 2006a: Party: a laboratory for recursive partitioning. R package version 0.9–0.
  • Hothorn, T.; Hornik, K. and Zeileis, A. 2006b: Unbiased recursive partitioning: a conditional inference framework. Journal of Computer Graphraphics and Statistics, 15: 651–674. DOI: 10.1198/106186006x133933
  • Iverson, L.R. and Prasad, A. 2001: Potential changes in tree species richness and forest community types following climate change. Ecosystems, 4: 186–199. DOI: 10.1007/s10021-001-0003-6
  • Járó Z. 1972: A termőhely fogalma. In: Danszky I. (szerk.) Erdőművelés I. Mezőgazdasági Kiadó, Budapest, 47–79.
  • Jiménez-Valverde, A. and Lobo, J.M. 2007: Threshold criteria for conversion of probability of species presence to either – or presence – absence. Acta Oecologica, 31: 361–369. DOI: 10.1016/j.actao.2007.02.001
  • Jump, A.S.; Hunt, J.M. and Penuelas, J. 2006: Rapid climate change-related growth decline at the southern range edge of Fagus sylvatica. Global Change Biology, 12: 2163–2174. DOI: 10.1111/j.1365-2486.2006.01250.x
  • Jump, A.; Mátyás, Cs. and Penuelas, J. 2009: The paradox of altitude for latitude comparisons in species range retractions (review). Trends in Ecology and Evolution, 24(12): 694–700. DOI: 10.1016/j.tree.2009.06.007
  • Kölling, C. 2007: Klimahüllen von 27 Waldbaumarten. AFZ – der Wald 23: 1242–1244.
  • Koskela, J.; Buck, A. and Teissier du Cros, E. (Eds.) 2007: Climate change and forest genetic diversity: Implications for sustainable forest management in Europe. Biodiversity International, Rome, Italy.
  • Kramer, K.; Degen, B.; Buschboom, J.; Hickler, T.; Thuiller, W.; Sykes, M. and de Winter, W. 2010: Modelling exploration of the future of European beech (Fagus sylvatica L.) under climate change – range, abundance, genetic diversity and adaptive response. Forest Ecology and Management, DOI: 10.1016/j.foreco.2009.12.023
  • Lebourgeois, F.; Cousseau, G. and Ducos, Y. 2004: Climate-tree-growth relationships of a Quercus petraea stand in the forest of Bercé (“futaie des clos”, Sarthe, France). Annales of Forest Sciience, 61: 361–372. DOI: 10.1051/forest:2004029
  • Lebourgeois, F.; Bréda, N.; Ulrich, E. and Granier, A. 2005: Climate-tree-growth relationships of European beech (Fagus sylvatica L.) in the French permanent plot network (Renecofor). Trees – Structure and Function, 19: 385–401. DOI: 10.1007/s00468-004-0397-9
  • Legendre, P. and Fortin, M.J. 1989: Spatial pattern and ecological analysis. Vegetatio, 80(2): 107–138. DOI: 10.1007/bf00048036
  • Lenoir, J.; Gégout, J.C.; Pierrat, J.C.; Bontemps, J.D. and Dhote, J.F. 2009: Differences between tree species seedling and adult altitudinal distribution in mountain forests during the recent warm period (1986–2006). Ecography, 32: 765–777. DOI: 10.1111/j.1600-0587.2009.05791.x
  • Manel, S.; Williams, H.C. and Ormerod, S.J. 2001: Evaluating presence–absence models in ecology: the need to account for prevalence. Ecology, 38: 921–931. DOI: 10.1046/j.1365-2664.2001.00647.x
  • Mátyás, Cs. 2007: What do field trials tell about the future use of forest reproductive material? In: Koskela J.; Buck, A.; Teissier du Cros, E. (eds.): Climate change and forest genetic diversity: Implications for sustainable forest management in Europe. Biodiversity International Rome, Italy, 53–69.
  • Mátyás, Cs. 2010: Forecasts needed for retreating forests (opinion). Nature, 464: 1271. DOI: 10.1038/4641271a
  • Mátyás, Cs.; Vendramin, G.G. and Fady, B. 2009: Forests at the limit: evolutionary-genetic consequences of environmental changes at the receding (xeric) edge of distribution. Annals of Forest Science, 66: 800–803. DOI: 10.1051/forest/2009081
  • Mátyás Cs. és Gálos B. 2010: Erdőgazdálkodás és klimatikus szélsőségek: problémák és feladatok. „Klíma 21” füzetek, 63: 25–32.
  • Mátyás, Cs.; Nagy, L. and Ujvári-Jármay, É. 2010: Genetically set response of trees to climatic change, with special regard to the xeric (retreating) limits. Forstarchiv, 81: 130–141.
  • Mátyás, Cs.; Berki, I.; Czúcz, B.; Gálos, B.; Móricz, N. and Rasztovits, E. 2010: Future of beech in Southeast Europe from the perspective of evolutionary ecology. Acta Silvatica & Lignaria Hungarica, 6: 91–110. Teljes szöveg
  • Millar C.I., Stephenson N.L. and Stephens S.L. 2007: Climate change and forests of the future: managing in the face of uncertainty. Ecological Applications 17: 2145–2151. DOI: 10.1890/06-1715.1
  • Monserud, R.A. and Leemans, R. 1992: Comparing global vegetation maps with the kappa statistic. Ecological Modelling, 62: 275–293. DOI: 10.1016/0304-3800(92)90003-w
  • Ohlemüller, R.; Gritti, E.S.; Sykes, M.T. and Thomas, C.D. 2006: Quantifying components of risk for European woody species under climate change. Global Change Biology, 12: 1788–1799. DOI: 10.1111/j.1365-2486.2006.01231.x
  • Parry, M.L. and Carter, T.R. 1998: Climate Impact and Adaptation Assessment: A Guide to the IPCC Approach. Earthscan, London, UK. pp. 166.
  • Penuelas, J.; Ogaya, R.; Boada, M. and Jump, A.S. 2007: Migration, invasion and decline: changes in recruitment and forest structure in a warming-linked shift of European beech forest in Catalonia (NE Spain). Ecography, 30: 829–837. DOI: 10.1111/j.2007.0906-7590.05247.x
  • R Development Core Team 2007: R: a language and environment for statistical computing. R Foundation for Statistical Computing. Vienna, Austria. Egyéb URL
  • Raftoyannis, Y. and Radoglou, K. 2002: Physiological responses of beech and sessile oak in a natural mixed stand during a dry summer. Annals of Botany, 89: 723–730. DOI: 10.1093/aob/mcf133
  • Rehfeldt, G.E.; Tchebakova, N.M.; Milyutin, L.I.; Parfenova, E.I.; Wykoff, W.R. and Kouzmina, N.A. 2003: Assessing population responses to climate in Pinus silvestris and Larix spp. of Eurasia with climate transfer models. Eurasian Journal of Forest Research, 6: 83–98.
  • Solomon, S.; Qin, D.; Manning M. et al. (eds.) 2007: Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the 4th Assessment Report of the IPCC, Cambridge University Press.
  • Sykes, M.T.; Prentice, I.C. and Cramer, W. 1996: A bioclimatic model for the potential distributions of north European tree species under present and future climates. Journal of Biogeography, 23: 203–233.
  • Thuiller, W.; Vayreda, J.; Pino, J.; Sabate, S.; Lavorel, S.; Gracia, C. 2003: Large-scale environmental correlates of forest tree distributions in Catalonia (NE Spain). Global Ecology and Biogeography 12(4): 313–325. DOI: 10.1046/j.1466-822x.2003.00033.x
  • Thuiller, W.; Albert, C.; Araújo, M. B.; Berry, P. M.; Cabeza, M.; Guisan, A.; Hickler, T.; Midgley, G.F.; Paterson, J.; Schurr, F.M.; Sykes, M.T. and Zimmermann, N.E. 2008: Predicting global change impacts on plant species’ distributions: Future challenges. Perspectives in Plant Ecology, Evolution and Systematics, 9: 137–152. DOI: 10.1016/j.ppees.2007.09.004
  • Zuur, A. F.; Leno, E. N. and Elphick, C. S. 2009: A protocol for data exploration to avoid common statistical problems. Methods in Ecology and Evolution, 1: 3–14. DOI: 10.1111/j.2041-210x.2009.00001.x
  • Open Acces - Nyílt hozzáférés

    A cikk teljes terjedelmében szabadon letölthető, és megfelelő forrásmegjelöléssel szabadon felhasználható.

    Javasolt hivatkozás:

    Czúcz B., Gálhidy L. és Mátyás Cs. (2013): A bükk és a kocsánytalan tölgy elterjedésének szárazsági határa. Erdészettudományi Közlemények, 3(1): 39-53.

    3. évfolyam 1. szám,
    39-53. oldal

    Közlésre elfogadva:
    2013. június 28.

    Kapcsolódó cikkek
    a folyóiratban

    5

    A szerzők további cikkei a folyóiratban

    6

    Témájukban kapcsolódó cikkek az Erdészettudományi Közleményekben*

    A szerzők további megjelent cikkei az Erdészettudományi Közleményekben

    * Automatikusan generált javaslatok a szerzők által megadott kulcsszavak más cikkek címében és kivonataiban való előfordulása alapján. Részletesebb kereséshez kérjük használja a manuális keresést.